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“Can you tell me about yourself?” The impacts of chatbot 
names and communication contexts on users’ willingness 
to self-disclose information in human-machine 
conversations
Weizi Liu , Kun Xu , and Mike Z. Yao

ABSTRACT
Chatbots provide functional and social support in various con
texts. They are often designed with humanlike features. This 
study examines how chatbots’ assigned names (humanlike vs. 
neutral vs. machinelike) and communication contexts (func
tional vs. social) influence users’ willingness to disclose personal 
information. We conducted a 3 × 2 “between-subjects” online 
experiment with random assignments of 299 participants. The 
results showed that a functional communication context eli
cited greater participants’ willingness to disclose information, 
but the impact of chatbot names was not significant. These 
findings provide an extended understanding of the Computers 
Are Social Actors paradigm and may inspire the exploration of 
conditional effects in privacy research. The practical implications 
for context-aware designs are discussed.
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Introduction

Chatbots are computer programs that interact with users using natural lan
guage (Miner et al., 2016). They are pervasive and versatile personal confidants 
in various contexts, including e-commerce, healthcare, and education (Følstad 
& Brandtzæg, 2017). As information exchange between humans and machines 
is becoming more seamless, natural, and akin to interpersonal communication 
compared with conventional computer interfaces (Guzman & Lewis, 2020), 
chatbots that prompt and collect user information to provide personalized 
services make privacy concerns and information disclosure prominent issues 
(Ischen et al., 2019). Moreover, humanlike design features (e.g., human names, 
gender, voices) embedded in chatbots mimic human communicators, making 
human-chatbot interaction increasingly social and interpersonal (Xu & Liao, 
2020). Scholars are concerned with how such design features and the applica
tion contexts of machines alter human-machine dynamics, resulting in differ
ent user perceptions and responses (Araujo, 2018; Waytz et al., 2014). There is 
a crucial agenda on issues surrounding transparent artificial intelligence (AI), 
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user trust, and privacy decision-making in human-machine communication 
(HMC) (Lankton et al., 2015).

Self-disclosure, defined as the act of revealing personal information, 
thoughts, or feelings to others (Altman & Taylor, 1973), was originally studied 
in interpersonal communication for relational goals. In technology-mediated 
environments, users may disclose personal information to systems and devices 
in exchange for services, such as transactions and personalization (e.g., Dinev 
& Hart, 2006; Metzger, 2006). Existing studies in HMC have examined privacy 
concerns and trust-related attitudes in response to certain chatbot designs 
(Ischen et al., 2019; Waytz et al., 2014); however, few have focused on 
information disclosure, particularly across aforementioned application con
texts (e.g., e-commerce, healthcare, etc.). In this study, we explore how chatbot 
names, a common design feature of the technology, and communication 
contexts might affect user self-disclosure.

Effects of naming conventions in HMC

The Computers Are Social Actors (CASA) paradigm posits an automatic 
tendency for humans to respond to computers socially (Nass et al., 1994). It 
suggests that certain humanlike technological features, sometimes referred to 
as social cues (e.g., human names, voices, personas, and gestures) can trigger 
social responses beyond functional human-computer interactions. Social cues 
embedded in machine interfaces can remind users of interpersonal commu
nications, leading them to apply interpersonal norms to HMC (Nass & Moon, 
2000). Recent research has provided updated explanations of technology users’ 
responses to social cues, emphasizing unique human-media social scripts 
(Gambino et al., 2020). Name is a commonly found social cue in AI product 
design. Naming involves “key elements of identification and personhood.” 
(Palsson, 2014, p. 618). Psychology research suggests that names significantly 
affect people’s evaluations of intelligence, popularity, and competence (Young 
et al., 1993). When naming products, technology companies often provide 
detailed reasons and background stories to instill social meanings and brand 
values. For example, Amazon’s agent “Alexa” was inspired by the Library of 
Alexandria as a symbol of knowledge (Ard, 2021); Google chose a more 
generic name (“Google assistant”) because they “think of this as building 
each user their own individual Google” (Statt, 2016); some names such as 
“iRobot Roomba” are more machinelike. With a particular interest in name 
labels, this study considered a ground-up approach to selectively examine how 
humanlike, neutral, and machinelike names signal different social identities 
and influence disclosure as an important type of social response in HMC.

Based on the CASA framework, researchers have tested the effects of labeling 
(e.g., color, nationality, and location) of a computer agent on users’ social 
categorization (Eyssel & Kuchenbrandt, 2012; Reeves & Nass, 2002; Xu & 
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Lombard, 2017). They found that sharing the same cues with an agent led to 
users’ group identification with the agent, more favorability, and greater anthro
pomorphism. Other research has examined how a chatbot’s visual, identity, and 
conversational cues impact user disclosure (Ischen et al., 2019; Y. Kim & Sundar, 
2012). Ischen et al. (2019) found that a chatbot with a human name, cartoon 
image, and casual language led to users’ lower privacy concerns about informa
tion disclosure than those without these features. Following the CASA paradigm 
and based on findings from previous empirical studies, we hypothesize that 
a chatbot with a human name could induce more favorable responses from 
users, which includes more information disclosure than other naming options.

H1: The chatbot’s humanlike name may elicit stronger user willingness to 
disclose personal information than a neutral or machinelike name.

Effects of communication contexts in HMC

Communication is context-based, while privacy is context-dependent 
(Acquisti et al., 2015). From a system design perspective, the theory of 
Contextual Integrity (Nissenbaum, 2004) discusses the privacy expectations 
and norms of information flows in specific contexts. Although privacy is 
a universal human need, privacy norms are not universal; one can feel com
fortable sharing something in one context while considering the same infor
mation private in another. Situational factors heavily influence individual 
privacy management and self-disclosure (Masur, 2019). People’s privacy pre
ferences and decisions vary according to the context and type of conversation 
(Acquisti et al., 2015). Much research on HMC has investigated the effects of 
social cues in a particular scenario (Waytz et al., 2014; Y. Kim & Sundar, 2012); 
however, less is known about whether these effects may change in other 
contexts. The CASA paradigm discusses the tendencies of users’ social 
responses; however, it offers a framework for users’ social responses without 
distinguishing specific contexts.

By applying the notion of Contextual Integrity, we emphasize the effects of 
context in human-machine communication. The existing literature has focused 
on two general categories of contexts in human-chatbot interactions: functional- 
utilitarian and social-emotional (Brandtzaeg & Følstad, 2017; Yang & Lee, 2019). 
In these categories, chatbots are respectively designed for informational support 
(e.g., Brixey et al., 2017) and socio-emotional support (e.g., Y. C. Lee et al., 2020). 
While research on contextual differences in HMC has not been sufficiently 
systematic, existing studies offer hints. In interpersonal communication, Rhodes 
and Geller (1992) found that clients may open up more easily with researchers 
than with their therapists because the former relational context is more 
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professional and less intimate. In HMC, Cho et al. (2019) found that in 
a utilitarian context, participants perceived voice interaction as more efficient 
and evaluated VAs more positively than in a hedonic context. Sundar and Kim’s 
(2019) research on machine heuristic suggested that users were more likely to 
disclose credit card information to a machine than to a human agent for flight 
reservations, emphasizing the reasoning for participants’ faith in a machine’s 
expertise and utilitarian nature. A more recent study suggested that users prefer 
functional AI (primarily for completing tasks) over social AI (primarily as a social 
companion) because functional AI is perceived as more useful (J. Kim et al., 2021). 
These findings indicate that people may be overall more accustomed to interacting 
with chatbots in functional contexts and may feel more comfortable with chatbots 
in functional roles. Therefore, we propose the following hypothesis:

H2: A chatbot designed for a functional context will elicit users’ stronger 
willingness to disclose personal information than one designed for a social 
context.

Furthermore, we wonder whether different contexts could potentially alter the 
effects of social cues. As Darling (2015) suggested, some robots are designed to 
appear less social to be less threatening, whereas others are more desirable 
when they have more social characteristics. Moreover, Calo (2009) suggested 
that humanlike machines can trigger more user engagement, but they can also 
hinder intimate disclosures under certain circumstances. Therefore, 
a chatbot’s label may differently affect disclosures according to the context. 
We speculate a context congruity issue: a chatbot with a humanlike name in 
a social context may increase disclosure willingness as supported by CASA; 
a machinelike name in a functional context may also increase disclosure 
willingness as supported by machine heuristics. When the name and the 
context are mismatched, the willingness to self-disclose decreases. Therefore, 
we raise the following exploratory research question:

RQ: Will the names of a chatbot interact with the communication context in 
affecting users’ willingness to disclose personal information?

Method

Participants

With IRB approval, 381 adult participants were recruited from Amazon 
Mechanical Turk. Excluding 82 participants who failed the attention check, 
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the final sample size was 299 (198 males and 101 females). The participants’ 
ages ranged from 21 to 65 years (M = 34.6, SD = 9.38). Informed consent was 
obtained from all participants.

Experiment design and procedures

The online experiment adopted a 3 (chatbot name) × 2 (communication con
text) between-subjects design. Participants were randomly assigned to one of 
six conditions. We manipulated the names and introductions of the chatbot 
and maintained the same aesthetic design and dialogue across the conditions. 
Based on the naming conventions in industry (e.g., “Alexa,” “Google 
Assistant,” “iRobot”), we manipulated the chatbot’s names in the three con
ditions as (a) “Sam” – a unisex humanlike name (n = 137); (b) “Assistant 
No.1” – a generic name without explicit human or machine name cues (n =  
116); (c) “Chatbot” – a machinelike name (n = 128). While “Sam” is more 
often used as a human name and “Chatbot” is a machine name, the name 
“assistant” does not inherently imply a specific entity. It only suggests the 
function or purpose of providing assistance, regardless of whether it is per
formed by a human, a machine, or a combination of both. These names 
consistently and repeatedly appeared in the instructions and the conversation 
scripts given to the participants. Communication contexts were manipulated 
by informing participants of the different design purposes. In the functional 
context, the chatbot was introduced to provide professional health advice. In 
the social context, the chatbot was introduced to provide companionship and 
social support.

Participants were told that the research team was developing a chatbot and 
invited to evaluate the user interface. They first read a screenshot of a sample 
conversation between a chatbot and a human user (see Figure A1). “The 
chatbot greeted the user and briefly introduced itself.” After reading the 
conversation, participants were asked how willing they were to disclose their 
personal information if the chatbot needed it for a personalized service. The 
respondents indicated their willingness to disclose information by responding 
to a list of queries. The questionnaire also included an attention check ques
tion that asked participants to recall the name of the bot (“Sam,” “Assistant 
No.1,” “Chatbot,” or “do not remember”).

Dependent measures

To measure participants’ willingness to disclose personal information to the 
chatbot, 20 items of personal information (e.g., age, address, height/weight, 
mental status, and personal life) were adapted from previous research on self- 
disclosure and online privacy (Joinson et al., 2008; Nass & Moon, 2000). 
Participants reported their willingness to disclose each item on an 11-point 
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scale (0 = extremely unwilling, 10 = extremely willing). They were asked, 
“Please indicate how willing you are to share this information (e.g., age) 
with Sam.” Responses were added and averaged to form an index of their 
willingness to disclose (M = 6.20, SD = 1.99, α = .95).

We also included perceived anthropomorphism of the chatbot with a five- 
item bi-polar scale (Ho & MacDorman, 2010) as an additional measure aside 
from the main analysis. The items were rated on a 11-point scale (e.g., 0 =  
Machinelike to 10 = Humanlike). The items were averaged into a composite 
score (α = .93, M = 6.35, SD = 2.24).

Results

After verifying the statistical assumptions, a two-way ANCOVA was con
ducted to test the main and interaction effects of names and communication 
contexts on users’ willingness to disclose information. As previous studies 
suggested that gender and age differences exist when people make privacy- 
related decisions (Kezer et al., 2016; Tifferet, 2019), we controlled participants’ 
gender and age. The results revealed that there was no significant difference in 
willingness to disclose information among the three conditions (F [2, 291] =  
0.08, MSE = 0.31, p = .93, η2 = .001). Therefore, H1 was not supported. 
However, there was a significant difference in the willingness to disclose 
information between the two contexts (F [1, 291] = 6.08, MSE = 23.95, p  
= .014, η2 = .02). The mean score for willingness to disclose information in 
the social context (M = 5.91, SD = 2.07) was significantly lower than that in the 
functional context (M = 6.49, SD = 1.86) (Figure A2). Therefore, H2 was sup
ported. Moreover, there was no significant interaction effect between social 
cues and communication context (F [2, 291] = 0.15, MSE = 0.57, p = .87, η2  

= .001), which answered the research question.

Discussion

Differing from much of the existing research comparing human and machine 
agents (e.g., Laban et al., 2021; Sundar & Kim, 2019), this study focuses on the 
effects of different designs and interaction contingencies (i.e., name labels and 
communication contexts) of a chatbot. Studies have suggested that people’s 
subjective perceptions of disclosures to artificial and human agents are often 
aligned with their objective disclosures (Laban et al., 2021), and our findings 
on participants’ willingness to self-disclose information provide implications 
that help us understand the nuances in HMC, with a particular emphasis on 
contextual factors.

The first hypothesis, which predicted a significant effect of the names 
assigned to chatbots, was not supported. This finding is incompatible with 
prior research on the effects of other social cues, such as gender, 

COMMUNICATION RESEARCH REPORTS 127



nationality, and team membership, on computers (Eyssel & 
Kuchenbrandt, 2012; Reeves & Nass, 2002). One possible explanation is 
that our manipulation of names was not strong enough to affect partici
pants’ perceptions and decisions. Many participants failed the attention 
check, indicating that the minimal manipulation of names was easily 
neglected. Furthermore, Beattie et al. (2020) found that participants did 
not differentiate between human and chatbot message sources but rated 
emoji-featuring messages higher than verbal-only messages, regardless of 
the human or chatbot labels, indicating that ostensible cues matter less 
than other factors such as message quality in human-chatbot interactions. 
Another possible explanation is the users’ lack of social presence and 
identification with the chatbot. In past literature, users’ social responses 
have been categorized into first-degree responses (user identification of 
the social characteristics of technology such as social presence and per
ceived personalities) and second-degree responses (attitudinal and beha
vioral changes) (K. M. Lee et al., 2006). In this study, the effects of names 
may not have been sufficient to induce changes in the second-degree 
responses (i.e., disclosure decisions).

The main effect of the communication contexts was significant, meaning 
that given the same dialogue, interface, and information queries, users would 
rather disclose information to a functional tool than a social companion. 
Echoing Calo’s (2009) research, this may occur because a socio-emotional 
context triggers more social pressure and privacy concerns. Another explana
tion can be that in a social context, participants may not expect a chatbot to 
fulfill their socio-emotional needs as in interpersonal relationships, especially 
in their initial encounter through sample conversation. According to the social 
penetration theory (Altman & Taylor, 1973), individuals’ evaluation of rela
tionship advancement is heavily dependent on the nature of perceived rewards 
and costs (Tang & Wang, 2012). Disclosing information to a functional 
chatbot compared to a social one may result in more concrete rewards. In 
the social context, if individuals have concerns over the progression of the 
claimed social-emotional relationship and rewards, they may express less 
disclosure willingness. Finally, another possibility is that users develop unique 
social scripts and apply them to media agents (Gambino et al., 2020). These 
unique social scripts are developed based on the social affordance of the media 
agents as well as the temporal and situational factors affecting users’ relation
ships with media agents.

Our findings have theoretical implications for HMC research. Past research 
on the CASA paradigm has offered a broad framework that indicates the 
necessity of including the specifications of social cues, individual differences, 
and contextual factors (Lombard & Xu, 2021). This study not only examined 
naming conventions but also added context as an under-studied dimension to 
manifest increased nuances in HMC and provide novel insights. Researchers 
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should contextualize privacy and disclosure based on participants’ commu
nication goals in HMC. This requires the integration of theories and methods 
from both HMC and interpersonal communication. As we only distinguished 
social and functional contexts, more contextual factors, such as social rituals, 
cultural influences, and people’s acceptance of social roles, may provide new 
guidelines for extending CASA.

Our findings inform context-aware designs in the domain of intimate 
HMC. Designing chatbots for social purposes requires more effort to build 
users’ trust and sense of security than designing them for functional purposes. 
This study also advocates catering to implicit and explicit user needs regarding 
the role of chatbots, the nature of interactions, and the interplay between 
contexts and design features.

Limitations and future directions

The chatbot names tested in this study were selected empirically from existing 
conventions. The name “assistant,” neither humanlike nor machinelike, may 
also imply a social role, which could be confounding. A deeper examination of 
the meanings of these names is required. Furthermore, our additional measure 
of perceived anthropomorphism did not yield significant differences among 
the three conditions, which suggested a weakness in the manipulation of 
names. Future studies should theoretically analyze these names, directly 
explore users’ interpretations, and seek alternative manipulation methods to 
confirm their effects.

The effect size of the difference between functional and social contexts in 
user disclosure was relatively small, which indicated that contextual effects can 
be significant but subtle. This may have been caused by the experimental 
design as the context manipulation was not explicit. Participants may not have 
formed significantly different impressions of the chatbot based on its intro
duction. Future studies should seek alternative designs to retest the effect size.

Finally, instead of testing users’ real self-disclosure behavior, this study only 
examined the effects of chatbots’ names by displaying sample conversations 
and measuring users’ willingness to self-disclose. It remains unknown whether 
name labels would have more salient and accumulated effects in real human- 
chatbot conversations. Future studies could utilize real conversations to exam
ine these findings and explore whether participants’ subjective disclosure 
intentions and objective behaviors are consistent.
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Appendix

Figure A2. Willingness to disclose personal information in each condition.

Figure A1. Stimuli: Sample screenshots in the “Sam” condition in the functional/social context.
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