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A B S T R A C T   

In past works, social robots have been designed to mimic human appearances and behavior. 
However, little is known about how human beings may imitate social robots. Drawing on social 
cognitive theory and the Media Equation, this study focuses on the modeling effects of social 
robots in an environment protection context. A lab experiment (N = 128) with a between-subjects 
factorial design was conducted to examine how social robots’ behavioral outcomes and social 
roles affected individuals’ modeling behavior. This study suggested that social robots’ positive 
behavioral outcomes were effective in evoking users’ modeling tendencies serially through social 
presence and identification or only through identification. Robots’ mere presentation of behavior 
with no outcomes exerted effects serially through social presence and identification. Additionally, 
assigning social robots an instructor role led to users’ modeling behavior serially through users’ 
perception of robots’ expertise and credibility. The study analyzed the psychological mechanisms 
behind users’ modeling behavior.   

1. Introduction 

In his article Computing Machinery and Intelligence, Turing (1950) proposed one of the most pivotal thought experiments in the 
history of human–computer interaction (HCI): the imitation game. The basic idea of the thought experiment was that if a machine 
assumes the part of a human role and tricks a human interrogator into believing that the machine is indeed a person, then the machine 
can be considered capable of imitating humans and be perceived as intelligent. Since then, ample work has been done to address the 
question, “Can machines think?” Searle (1980) proposed the Chinese Room Experiment in his work Minds, Brains, and Programs, which 
suggested that a computer’s imitation of human communication cannot be equated with real mastery of human language. Later, 
Suchman (2007) depicted the significance of situated action in HCI and argued that every meaningful design of interactions between 
humans and machines must “account for specific local contingent determinants” (p. 84). In other words, machines cannot be 
considered intelligent if they cannot detect the breaches in communication, which are considered prevalent and trivial in human
–human interaction. 

Aligned with these philosophical contemplations of whether machines can mimic or replace human intelligence in communication, 
the dominant paradigm in HCI research, especially in human-robot interaction (HRI), has been focused on setting humans as role 
models and devising machines to simulate human personalities, emotions, and actions. For example, HuggieBot, developed by the Max 
Planck Institute for Intelligent Systems at ETH Zürich, was designed to provide soft and warm hugs to those who do not regularly 
receive hugs from other humans (Fadelli, 2021). Facebook developed a bot that was trained to mimic how people adjust their 
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expressions in daily conversations (Reynolds, 2017). Furthermore, prior literature has identified a range of social cues, such as human 
voices (Cho et al., 2019), human appearances (Barco et al., 2020; Li et al., 2010), humanlike movements (Salem et al., 2013), and 
anthropomorphic language styles (Hoffmann et al., 2020; Straten et al., 2020) as important elements in developing social robots. 

While endowing machines with humanlike behaviors and appearances reflects a human-centric approach, researchers have not 
fully discussed the implications of the opposite lens: can machines be treated as role models? Just as Groom and Nass (2007) suggested, 
while developers have attempted to create humanlike robots, they “sometimes overlooked what makes robots special” (p. 494). 
Considering that social robots afford the programmability of utilizing visual, verbal, and kinesic cues to exert social influence in public 
spaces (Castellano et al., 2021; Thunberg & Ziemke, 2020), this study explores the contingencies under which humans treat robots as 
role models and hence imitate robots’ pro-social behavior. 

Instead of following the previous paradigm that delves into how machines can be designed to mimic human beings, this study draws 
on the integration of social cognitive theory (SCT) and the Media Equation (TME) to inquire into the potentiality of using social robots 
to evoke humans’ modeling behavior. Specifically, this study investigates an environment protection scenario and examines how social 
robots may exert modeling effects on individuals’ actual behavioral change via the influence of behavioral outcomes and social roles. 

Different from previous literature, this line of research could make important theoretical contributions. First, prior research on SCT 
has been primarily focused on individuals’ learning behavior in interpersonal or mediated communication contexts. This study is one 
of the first to evaluate whether SCT holds its explanatory power and predictive power in HRI. Second, prior SCT research has 
established the relationship between individuals’ expected behavioral outcomes and their modeling behavior (Bandura, 2009), 
however, little is known about the psychological mechanism underlying this process in HRI contexts. To understand the explanatory 
power of SCT in HRI, this study parses out individuals’ psychological processing of social robots’ modeled behavior and evaluates the 
roles that social presence and identification play in this communication process. Third, research on TME has described how individuals 
apply social scripts, such as etiquette rules and similarity attraction rules, to HCI (Reeves & Nass, 1996), however, whether individuals 
apply the social learning script to HRI remains to be explored. Hence, this study tests the extension of TME and seeks to fathom how 
individuals may learn from robots that present different behavioral outcomes and undertake different social roles even when they are 
aware that their communication partner is a machine rather than a human. 

2. Literature review 

2.1. Vicarious learning in social cognitive theory (SCT) 

SCT focuses on “psychosocial functioning in terms of triadic reciprocal causation” (Bandura, 2009, p. 94). According to the theory, 
personal, environmental, and behavioral factors influence each other in this triadic relationship. As part of the personal factors, 
Bandura (2009) argued that human beings have the capacity for symbolization, self-regulation, self-reflection, and vicarious learning. 
As this study centers on how users may learn from the modeling behavior of social robots, the psychological mechanism underlying 
vicarious learning is explained below. 

Bandura (2009) suggested that vicarious learning occurs through observing others’ behaviors and the consequences of these be
haviors. Forming expectations of behavioral outcomes is a key step in this modeling process. Outcome expectation refers to a person’s 
perception of the likely consequences of an action (LaRose et al., 2001). Bandura (2009) argued that outcome expectations function as 
either incentives or disincentives for behaviors. Positive outcome expectations incentivize individuals to conduct behavior that leads to 
valued outcomes. Negative outcome expectations inhibit people from engaging in certain behaviors, as these behaviors may bring 
about undesirable consequences. 

Behavioral outcomes have been treated as a central focus in SCT research. Garrett and Ganziger (2008) found that the expected 
utility of the Internet was a positive predictor of personal Internet use, and the expected restrictions on computer use were negative 
predictors of personal Internet use during work. The effects of outcome expectations have also been found in research on media and 
body image. Hendricks (2002) found that the more women compared themselves with the characters on TV, the more they endorsed a 
thin body image. Overall, based on the tenets of SCT, individuals are more likely to present modeled behavior if the behavior leads to 
desired outcomes, but less likely to carry out the behavior if the behavior generates unrewarding outcomes (Bandura, 2009). 

While plenty of evidence has clarified the effects of behavioral outcomes on people’s modeling behavior via mass media channels 
(Nabi & Clark, 2008; Zimmerman et al., 2012), limited research has investigated whether these modeling effects can be transferred to 
HRI (Zanatto et al., 2020). Considering that individuals’ communication partners switch from media characters to social robots in this 
process, TME can be incorporated to better tackle the question. 

2.2. The media Equation (TME) 

TME was derived from the Computers are Social Actors (CASA) paradigm, in which Nass and colleagues found that humans apply 
the social scripts of interpersonal communication to HCI. These social scripts include, but are not limited to, the politeness rule, gender 
stereotypes, and the personality attraction rule (see Nass & Moon, 2000). Drawing on these findings, Reeves and Nass (1996) described 
that individuals’ responses to media technologies are fundamentally social and natural. As “new media engage old brains” (p. 68), 
media users equate interaction with media technologies to interaction with humans, especially when these technologies demonstrate 
social cues, such as human voices and language. 

TME has been applied to a wide range of technologies, including televisions, computer agents, chatbots, and even smartphones 
(Carolus et al., 2019; Edwards et al., 2019; Horstmann et al., 2018; Westerman et al., 2019). Here, TME is used to explain users’ social 
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reactions to social robots. Social robots have been conceptualized through various angles. For example, Duffy (2003) highlighted the 
physical embodiment nature and defined a social robot as “a physical entity embodied in a complex, dynamic, and social environment 
sufficiently empowered to behave in a manner conducive to its own goals and those of its community” (p. 177). Zhao (2006) provided a 
broader explication and defined humanoid social robots as “human-made autonomous entities that interact with humans in a hu
manlike way” (p. 405). Similarly, Fox and Gambino (2021) referred to humanoid social robots as “human-made technologies that can 
take physical or digital form, resemble people in form or behavior to some degree, and are designed to communicate with people” (p. 
295). Although scholars diverge on their explications, social robots at least feature a certain extent of automation and the capacity of 
engaging in social interactions with their users (Lee et al., 2006; Xu, 2019). 

Research on TME has examined users’ different types of social responses, including users’ trust in technologies, perceived attraction 
of technologies, and conformity tendencies. Focusing on behavioral intentions, Xu and Lombard (2017) found that even when users 
were aware that they were interacting with a group of computer agents, they reported strong conformity intentions when these 
computer agents imposed uniform group norms. Revolving around actual behavioral change, Hoffman and Krämer (2021) found that 
compared to those who were not touched by a social robot, participants who were touched complied more with the robot’s request. 
Horstmann et al. (2018) found that when receiving a social robot’s objection, participants treated it as a social actor and waited longer 
to switch the robot off. 

Existing knowledge about vicarious learning and social responses may provide a fruitful starting point for investigating the 
modeling effects of social robots. Based on SCT and TME, it is reasonable to postulate that when a social robot demonstrates social cues, 
such as gestures, movements, voices, and eye contact, users may develop social responses to the robot. Such social responses may 
further allow individuals to transfer social learning behavior to HRI. Considering that Karutz and Bailenson (2015) noted that social 
learning may take effect not only in the form of human models but also symbolic models such as digital characters, we postulate that 
individuals may model social robots’ behavior based on their perceived behavioral influence (i.e., expected outcomes of robots’ 
behavior). Furthermore, as prior meta-analysis has suggested that individuals’ behavioral intentions have small-to-medium-sized 
effects on actual behavioral change in social psychology (Webb & Sheeran, 2006), we propose the following hypothesis to test the 
indirect effects of social robots’ behavioral outcomes on individuals’ modeling behavior: 

H1: Compared to negative behavioral outcomes, a social robot that demonstrates positive behavioral outcomes will be more 
likely to lead to individuals’ modeling behavior through their perceived behavioral influence and modeling intention. 

2.2.1. Perception-behavior link 
Past works have documented how modeling behavior may occur without reinforcing the succeeding consequences. (Bandura et al., 

1961). The original Bobo Doll experiment demonstrated that, even without rewards or punishments, an adult’s aggressive behavior 
still led to children’s violent behavior (Bandura et al., 1961), implying that individuals’ mere observation of the behavior could lead to 
their imitation. This perspective was further supported in research on perception-behavior link (Chartrand & Bargh, 1999; Dijksterhuis 
& Bargh, 2001), where scholars have suggested that perceiving others’ behavior automatically creates the tendency to mimic the 
behavior. Chartrand and Bargh (1999) found in their experiment that even minimal interaction with a stranger led to a certain level of 
imitation, which included mimicking facial expressions, postures, and speech patterns. A possible explanation for the perception- 
behavior link lies in the mechanism of natural selection: people imitate others’ behavior to reduce potential risks and to seek a 
sense of belongingness (Chartrand & Bargh, 1999). While the perception-behavior link is interpreted to be wired into our brain, 
research has noted that disincentives can generate counter forces on imitation and override the link (Bargh & Fergusson, 2000; Macrae 
& Johnston, 1998). That is, compared to negative behavioral outcomes, mere observation of a robot’s behavior should be more likely 
to lead individuals to model the behavior. Thus, based on SCT, TME, and the perception-behavior link, we propose the following 
hypothesis to test the indirect effects of social robots’ mere behavioral presentation on individuals’ modeling behavior. 

H2: Compared to negative behavioral outcomes, a social robot that demonstrates behavior without presenting behavioral 
outcomes will be more likely to lead to individuals’ modeling behavior through their perceived behavioral influence and 
modeling intention. 

2.3. Social presence and identification 

Research on the psychological mechanism of vicarious learning suggests that it is indeed the identification with the model that 
facilitates imitation. Identification is defined as the degree to which individuals relate to the model and feel similar to it (Fox & 
Bailenson, 2009). The perceived similarities can be the model’s gender, personality, social roles, or skills (Karutz & Bailenson, 2015). 
For example, prior research has suggested that viewers were more likely to identify with television models that were of the same 
gender as them (Andsager et al., 2006). Fox and Bailenson (2009) advanced the Proteus Effect and noted that seeing a virtual rep
resentation of self being rewarded for losing weight encouraged individuals to exercise, while observing virtual representations of 
others was not sufficient to trigger more exercise, which confirmed the significance of identification with the model even in virtual 
environments. 

The role of identification in the modeling effects was further noted in Nabi and Clark’s (2008) study, where they found that favored 
TV characters may infuse their behaviors with positive value, despite the risks of the behaviors. If the effects of favored TV characters 
outweigh the negative outcome expectations, then exposing viewers to risky behaviors would not be sufficient to counterbalance the 
impact of identification. Therefore, it can be implied that identification plays a mediating role between the perceived behavioral 
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outcomes of the model and users’ modeling tendencies. 
Despite the importance of identification in individuals’ vicarious learning from other human models, given that humans and 

machines have ontological divides (Edwards, 2018; Guzman, 2020) and do not share gender or personalities in nature, it is assumed 
that users’ identification with social robots would not automatically arise unless users perceive social robots as if they were real people 
in the first place. In other words, to develop identification with social robots, the stepping-off point is that users need to perceive robots 
as social beings. 

It is here where the concept of social presence may bridge the relationships among perceived behavioral outcomes, identification, 
and users’ modeling behavior. Social presence has been defined as “a psychological state in which virtual (para-authentic or artificial) 
social actors are experienced as actual social actors in either sensory or non-sensory ways” (Lee, 2004, p. 45). A community of presence 
scholars at the 2000 Presence Conference conceptualized social presence as the experience where a person partially or fully overlooks 
the mediating nature of technology and feels as if they were communicating with other people (ISPR, 2000). Lombard and Ditton 
(1997) further distinguished two types of social presence: social-actor-within-medium presence and medium-as-social actor presence. 
While the former type often emerges in mediated communication contexts where users respond to media characters or avatars as real 
social actors, the latter type occurs more often in HCI contexts where users directly respond to the cues presented by the media 
technologies per se. Based on the definitions, perceiving social robots as if they were social beings has been considered a typical 
example of medium-as-social-actor presence, as users partially overlook the nature of machines and respond to them as real people 
(Lombard & Xu, 2021; Xu & Liao, 2020). 

Social presence has been found to be a mediator between social cues and users’ social responses to social robots. Jung and Lee 
(2004) found that the physical embodiment of the zoomorphic robot AIBO had indirect effects on users’ positive evaluations of the 
robot through social presence. Lee et al. (2006) found that when participants interacted with the AIBO that exhibited complementary 
personalities to their own, they experienced stronger social presence than when they interacted with a robot that exhibited the same 
personalities as theirs. Stronger social presence further led to the perceived intelligence and social attraction of the robot. 

While research has established the links between robots’ behavioral cues and social presence (Bevan & Fraser, 2015) and the links 
between social presence and social responses (Lee et al., 2005; Lee et al., 2006), to our knowledge, no prior literature has elucidated the 
psychological mechanism of how individuals model social robots’ behavior through social presence and identification. In this study, it 
is postulated that the relationship between social presence and identification may help illuminate social robots’ modeling effects, as 
identification plays a mediating role in vicarious learning and social presence is a necessary precursor to individuals’ identification 
with social robots. Given that individuals’ actual behavior change may occur due to their behavioral intentions (Ajzen, 1991; Webb & 
Sheeran, 2006), the following hypothesis is proposed to test the psychological processing of social robots’ modeled behavior. 

H3: Compared to negative behavioral outcomes, a social robot’s positive behavioral outcomes will be more likely to lead to 
individuals’ modeling behavior serially through their perceived behavioral influence, social presence, identification, and 
modeling intention. 
H4: Compared to negative behavioral outcomes, a social robot that demonstrates behavior without presenting behavioral 
outcomes will be more likely to lead to participants’ modeling behavior serially through social presence, identification, and 
their modeling intention. 

2.4. Social roles of social robots 

One question that has continuously been discussed among HRI scholars concerns the social roles robots should assume in public 
sphere. Back in the 1990s, Nass et al. (1995) examined the degree to which individuals were willing to accept computers in human 
roles. They found that users were more likely to accept computers in routinized roles (e.g., bank tellers, accountants) than in inter
pretive roles (e.g., newspaper reporters, editorial writers) or personal roles (e.g., babysitters, judges). Since then, social robots have 
been tested in various positions including museum guides, information kiosk assistants, and food delivery staff (Mutlu & Forlizzi, 2008; 
Shiomi et al., 2006). While most of these positions are routinized social roles, research has advanced to a level where robots are 
assigned more interpretive and personal roles. Lee et al. (2017) found that social robots can be designed as healthcare advisors to 
effectively augment patients’ compliance. Looije et al. (2010) found that social robots can persuade older adults to conform to doctors’ 
suggestions by showing empathy and demonstrating emotions. As social robots become more personal and intelligent, their social roles 
begin to “fall into a hybrid category between strictly utilitarian and affective” (Shaw-Garlock, 2009, p. 250). 

Among the various social roles assigned to social robots, researchers have debated whether social robots should undertake a fellow 
role with heightened peer relations with users, or a specialist role with authority and area expertise, as both approaches have been 
found effective in evoking users’ positive attitudes toward robots. The former line of research centers on how users may form equal 
relations with social robots and maintain an in-group relationship with them (Eyssel & Kuchenbrandt, 2012). The latter line of research 
has suggested that social robots can serve as instructors with knowledge and expertise to promote attitudinal and behavioral change. 
Examples include robots playing a coaching role in encouraging adults to undertake physical activities (Čaić et al., 2020) or a teacher 
role in enhancing students’ learning performances (Edwards et al., 2016). In this process, social roles with specialization evoke users’ 
social responses through perceived expertise. As Liew and Tan (2018) pointed out, a specialist virtual agent could augment online 
users’ purchase intentions through users’ interpretations of the agent expertise. Based on the intricacy of the different effects produced 
by robots as instructors and robots as fellows in prior research, this study continues to explore this question and seeks to understand 
how social robots in different social positions affect users’ modeling tendencies. We propose the following hypothesis. 
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H5: Compared to a fellow role, a social robot in an instructor’s role will be more likely to lead to individuals’ modeling behavior 
through their perceived expertise and modeling intention. 

Individuals’ psychological processing of robots’ social roles is further contingent upon their trust in technologies. Past research has 
suggested that when a robot manifested expertise, participants developed more affective trust in it than when expertise was not 
emphasized (Sah et al., 2011). As establishing trust in social robots further facilitates users’ intention of behavioral change (You & 
Robert, 2018), it can be postulated that trust is a key component in explaining how users’ perception of robots’ expertise influences 
their modeling intention. Based on above-mentioned literature, we further propose the following hypothesis. 

H6: Compared to a fellow role, a social robot in an instructor’s role will be more likely to lead to individuals’ modeling behavior 
serially through their perceived expertise, trust, and modeling intention. 

Combining the literature on vicarious learning and social roles, this study further investigates the interaction between a social 
robot’s behavioral outcomes and its social roles. It is speculated that a social robot presenting positive behavioral outcomes may exert 
strong effects on users’ modeling behavior when the robot is assigned a credible and persuasive social role. However, as it remains to be 
explored whether it is the instructor role or the fellow role that creates greater modeling tendencies, we propose the following research 
question. 

RQ1: How will a social robot’s behavioral outcomes interact with its social roles in affecting participants’ 1) modeling intention 
and 2) modeling behavior? 

3. Method 

3.1. Participants 

Based on a priori estimation with β = 0.2, effect size f = 0.03, and a = 0.05, power analysis suggested that at least 111 participants 
were needed for the sample size. A total of 138 participants were recruited from a large public university in the US to participate in a 
lab experiment1. They were informed that researchers were seeking to test the usability of a prototype social robot and a new garbage 
recycling system on campus. The garbage recycling tasks were used, as prior research had tested the feasibility of using social robots for 
promoting children’s attitudes toward recycling (Castellano et al., 2021). Participants were recruited either through the SONA system 
and offered extra credit or through advertisements posted on campus boards and rewarded with $10 gift cards. Of the 138 cases, eight 
were excluded due to technical problems in the experiment (e.g., the robot failed to recognize human faces due to masks, or the robot 
froze during the experiment). Two cases were removed as univariate or multivariate outliers. Thus, 128 participants were included in 
the final analyses. Their average age was 20.08 years (SD = 1.51). Among them, 31 were males (24.2 %), 96 were females (75.0 %), 
and one selected “other” (0.7 %). 

3.2. Experimental stimulus 

The social robot NAO, created by SoftBank Robotics, was used in the experiment. NAO has 25 degrees of freedom, which enables it 
to move its head, limbs, hands, and body. It is also equipped with seven touch sensors, two cameras, and four speakers to interact with 
the environment. The software Choregraphe was used to program its messages, behavior, visual recognition tasks, and reactions. Its 
own synthetic voice was used across all conditions. NAO has been applied in university settings in past HRI works (Hoffman & Krämer, 
2021; Li et al., 2017). 

A 3 (positive outcomes, negative outcomes, or no outcomes) X 2 (instructor, fellow) between-subjects factorial design was used. 
Participants were randomly assigned to one of the conditions. To manipulate the robot’s behavioral outcomes, the robot was pro
grammed to present the same behavior, but with positive, negative, or no verbal messages. Verbal messages were used as Bandura 
(1977) suggested models can be established through verbal instructions, such as explaining the outcomes of a group of actions. 

In the positive outcome conditions, the robot stated the positive consequences of its recycling behavior. For example, after the robot 
recycled plush toys into the container for recyclable waste, the robot delivered the message, “As producing plush toys consumes an 
extraordinary level of electricity and water, sorting plush toys into recyclable waste will bring about positive influence. It can conserve 
energy and help the people in developing countries.” In the negative outcome conditions, the robot informed participants of the 
negative consequences of its behavior, “Actually sorting plush toys into recyclable waste does not ensure that it can reproduce high- 
quality products. It can bring about negative influence. Bleaching the plush toys or clothing will expose workers to harsh working 
conditions that may deteriorate their health.” A total of four messages related to plush toys, green plants, plastic bags, and hair dye 
bottles were provided to participants during the experiment (see Appendix A of the Supplementary Materials for all the messages: 
https://osf.io/bhsr6/?view_only=e148010832b74c3d9246ffa45a1e7432). In the no outcome conditions, the robot did not provide 

1 Given the influence of the COVID-19 pandemic and reviewers’ constructive feedback, the author withdrew the submission in early 2022, re-ran 
the experiment from January to May in 2022, and submitted the manuscript in December 2022. Participants wore masks and followed the university 
COVID-19 policies during the experiment. Lab assistants invested additional time disinfecting the robot, lab computers, desks, and chairs between 
each session of the experiment. 
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any verbal messages after its recycling behavior. 
To manipulate the robot’s social roles, in the instructor conditions, the robot introduced itself with the following message, “I was 

invited by the university to help build a new garbage recycle system. I work as an instructor with expertise on garbage recycle here. I 
have been trained in different organizations to master the garbage recycle skills, and to teach the necessary knowledge. I am here to 
advise on the new garbage recycle system.” In the fellow conditions, the message was, “I was brought here as a fellow to learn about a 
new garbage recycle system. I did not receive any formal training, and I only had limited knowledge about garbage recycle skills. I am 
here to help test the new garbage recycle system”. 

3.3. Research design and procedures 

After participants entered the lab and signed the consent forms on a desktop computer, they were first asked about some de
mographic information and prior garbage recycling knowledge via the software Qualtrics. Participants were then asked to work on a 
garbage recycling task. 

In the task, participants were asked to sort green plants, plush toys, plastic bags, and hair dye bottles into four recycling categories: 
compost waste, hazardous waste, recyclable waste, and residual waste. The recycle categories were sampled from the official trash 
sorting guidelines released by the Kyoto, Berlin, and Shanghai municipal governments for stimulus sampling purpose (Reeves et al., 
2016). Meanwhile, these categories were used to minimize the effects of participants’ existing knowledge about campus waste 
recycling principles. 

After participants made their initial choices, they were led to a table where the social robot NAO was sitting. Four objects that 
represented each of the four garbage items, along with four empty recycling bins, were placed in front of the robot (see Fig. 1). 
Participants stood at a position that was about 25 to 30 inches away from the robot. They were given a script detailing the steps they 
needed to follow and the basic interaction techniques they could use to communicate with the robot. At the beginning, every 
participant was asked to greet the robot (e.g., participants said, “how are you,” “nice to meet you,” or “how is it going” to the robot). 
The robot responded with “fine,” “I’m good,” or “super!” This step was designed to familiarize participants with the robot’s reaction 
speed and voice features. 

After the greetings, participants were instructed to ask the robot why it was brought to the university. The robot responded to 
participants with the messages about its social roles (i.e., instructor vs fellow). Next, participants asked the robot to conduct the 
garbage recycling task. The robot was programmed to introduce what it could do first and then ask participants to choose a garbage 
item they would like it to sort. After participants told the robot the item they selected, the robot confirmed participants’ choice and let 
participants show the image of the item to it. When the robot recognized the item via its visual recognition system, it told participants 
to pick the object that represented the item and put the object in its hand. Meanwhile, the robot stretched out one of its arms and 
opened its hand. After participants placed the item into the robot’s hand, the robot grasped the object, moved its arms, and threw the 

Fig. 1. Experimental setting.  
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item into the matching recycling bin. The robot then either delivered the messages about the outcomes of its behavior (i.e., positive 
outcomes vs negative outcomes), or returned to its initial position without any follow-up message (i.e., no outcome condition). 

After the robot sorted the first garbage item, participants were asked to let the robot sort the next item based on their selection. 
Participants repeated this process until the robot finished sorting all four items (see Fig. 2). After the robot finished the whole process, 
participants were led back to the computer and asked to work on the recycling task again to make their final decisions. They were 
informed that the robot’s recycling behavior was not guaranteed to be correct. Finally, participants filled out the rest of the ques
tionnaire and received the debriefing form indicating the true experiment purposes. It should be noticed that the experiment was not 
designed to test whether participants would recycle trash, but whether and how participants would imitate the way the robot recycled 
trash. 

3.4. Measures 

The measure of social presence (M = 5.29, SD = 1.01, a = 0.86) was adapted from previous measures of social presence in the 
contexts of HRI (Lee et al., 2006). Participants were asked to report on a seven-point Likert-type scale with six items (1 = not all, 7 =
very much). Examples of the items included “how much did you feel as if you were interacting with an intelligent being?” and “how 
much did you feel as if you were together with an intelligent being?”. 

The measure of identification (M = 5.64, SD = 0.74, a = 0.70) was adapted from the previous measure of identification (Cohen, 
2001). Participants were asked to report on a seven-point Likert-type scale with seven items (1 = strongly disagree, 7 = strongly agree). 
Examples of the items included “I tend to understand the reasons why the robot did what it did” and “I think I had a good under
standing of the robot”. 

The measure of trust (M = 5.78, SD = 0.89, a = 0.79) was adapted from previous measures of trust in HCI (Gong, 2008; Wheeless & 
Grotz, 1977). Participants were asked to report on five seven-point semantic differential scale items. Examples of the items included 
“untrustworthy – trustworthy” and “unreliable – reliable”. 

The measure of modeling intention (M = 5.76, SD = 1.00, a = 0.82) was adapted from previous measures of conformity intention 
and openness to influence (Kim & Park, 2011; Nass et al., 1996). Participants were asked to report on a seven-point Likert-type scale 
with five items (1 = strongly disagree, 7 = strongly agree). Examples of the items included “I was open to influence from the robot” and 
“I desired to reach agreement with the robot”. 

Modeling behavior (M = 6.93, SD = 4.54) was operationalized as the change of participants’ choices to align with the robot’s 
garbage recycling behavior. It was adapted from previous measures of conformity behavior (Lee & Nass, 2002; Takayama et al., 2009) 
and measured by calculating the percentage of the number of changes that participants made to match the robot’s behavior and the 
total number of the inconsistencies between participants’ initial choices and the robot’s recycling behavior. For example, if a par
ticipant’s initial recycling decisions were completely inconsistent with the robot’s behavior (i.e., all four recycling actions were 
inconsistent with the robot’s behavior) and after observation, the participant changed one recycling decision to align with the robot’s 
behavior, then the modeling behavior was coded as 25 %. If participants did not make any change or did the opposite of what the robot 
presented, their score was coded as zero, meaning that no modeling behavior occurred in this process. The percentage was converted to 
a 10-point system. 

Perceived behavioral influence (M = 4.45, SD = 0.69) was measured by asking participants how much positive or negative in
fluence the robot’s garbage recycling behavior could lead to. Participants reported on a five-point semantic-differential scale item (1 =
negative, 5 = positive). 

Perceived expertise (M = 4.26, SD = 0.85, a = 0.87) was measured by adapting a previous measure of perceived expertise in HCI 
(Koh & Sundar, 2010). Participants were asked to report on a five-point Likert-type scale with three items (1 = strongly disagree, 5 =
strongly agree). Examples of the items included “the robot is an expert on garbage recycle” and “the robot specializes in garbage 
recycle”. 

In addition to demographic information, participants’ attitudes toward social robots and self-efficacy were used as control vari
ables. The measure of self-efficacy (M = 6.16, SD = 0.72, a = 0.79) was adapted from the previous measure of self-efficacy (Compeau & 
Higgins, 1995). Participants were asked to respond to five seven-point Likert-type items. A sample item was “I am confident that I could 
complete the job of trash sorting if someone else helps me get started.” Participants’ attitudes toward social robots (M = 1.95, SD =

Fig. 2. Experimental procedures.  
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0.80, a = 0.78) were measured by adapting the previous measure (Nomura et al., 2006). Participants reported on five five-point Likert- 
type scale items (1 = strongly disagree, 5 = strongly agree). A sample item was “I would feel uneasy if I was given a job where I had to 
use robots.” (see Appendix B in Supplementary Materials for more information about control variables https://osf.io/bhsr6/?view_ 
only=e148010832b74c3d9246ffa45a1e7432). 

3.5. Data analyses 

SPSS was used to test and examine the hypotheses and research questions. Univariate and multivariate outliers were examined. 
Multicollinearity was checked. The variables of perceived expertise, perceived behavioral influence, and modeling intention were 
power transformed due to negative skewness. To test H1-H6, the Process macro (Hayes, 2013) in SPSS was used. As behavioral 
outcomes involve three levels, Hayes and Preacher’s (2014) approach to analyzing multi-categorical independent variables in 
mediation analyses was adopted. Based on Tao and Bucy’s (2007) experimental paradigm of integrating effect-labeled media attributes 
and effect-based psychological states, the mediation analyses included manipulation check variables (i.e., perceived behavioral in
fluence, perceived expertise) as necessary mediators. Thus, model 6 was used to run serial mediation. To answer RQ1, two-way 
ANCOVA was used. 

4. Results 

Manipulation checks were conducted. Results from T-tests suggested that participants in the positive outcomes conditions (M =
4.60, SD = 0.50) perceived the robot’s behavior to have significantly more positive influence than those in the negative outcomes 
conditions (M = 4.26, SD = 0.73), t(81) = 2.41, p =.018, Cohen’s d = 0.54. Additionally, participants perceived the robot in an 
instructor role (M = 4.45, SD = 0.57) as more knowledgeable and specialized than the one in a fellow role (M = 4.07, SD = 1.01), t 
(119.99) = 2.19, p =.031, Cohen’s d = 0.47. Thus, the manipulation was successful. 

To test H1, results from serial mediation suggested that compared to negative behavioral outcomes, positive behavioral outcomes 
were more likely to have indirect effects on participants’ modeling behavior through perceived behavioral influence and modeling 
intention, B = 0.18, LLCI = 0.02, ULCI = 0.50. Thus, H1 was supported. 

To test H2, results from serial mediation suggested that compared to negative behavioral outcomes, a social robot’s presentation of 
behavior with no outcomes was more likely to have indirect effects on participants’ modeling behavior through perceived behavioral 
influence and modeling intention, B = 0.17, LLCI = 0.002, ULCI = 0.43. Thus, H2 was supported. 

To test H3, results from serial mediation suggested that compared to negative behavioral outcomes, positive behavioral outcomes 
were more likely to have indirect effects on participants’ modeling behavior serially through perceived behavioral influence, iden
tification, and modeling intention, B = 0.04, LLCI = 0.0002, ULCI = 0.13, or serially through perceived behavioral influence, social 
presence, identification, and modeling intention, B = 0.02, LLCI = 0.001, ULCI = 0.06. Thus, H3 was supported. 

To test H4, results from serial mediation suggested that compared to negative behavioral outcomes, the robot’s behavior with no 
outcomes was more likely to have indirect effects on participants’ modeling behavior serially through perceived behavioral influence, 

Table 1 
Results of the Hypotheses.     

95 % 
Confidence 
Interval   

Relationship Tested B (SE) LLCI ULCI Result 

H1 Positive outcomes → perceived behavioral influence → modeling intention → modeling behavior  0.18 
(0.13)  

0.02  0.50 √ 

H2 Behavior without outcomes → perceived behavioral influence → modeling intention → modeling behavior  0.17 
(0.11)  

0.002  0.43 √ 

H3 Positive outcomes → perceived behavioral influence → social presence → identification → modeling intention 
→ modeling behavior  

0.02 
(0.02)  

0.0012  0.06 √  

Additional results from Process Macro: 
Positive outcomes → perceived behavioral influence → identification → modeling intention → modeling 
behavior  

0.04 
(0.04)  

0.0002  0.13  

H4 Behavior without outcomes → perceived behavioral influence → social presence → identification → modeling 
intention → modeling behavior  

0.02 
(0.01)  

0.0002  0.06 √ 

H5 Instructor role → perceived expertise → modeling intention → modeling behavior  0.24 
(0.14)  

0.02  0.60 √ 

H6 Instructor role → perceived expertise → trust → modeling intention → modeling behavior 0.05 
(0.03)  

0.002  0.13 √ 

Note: LLCI: lower-level confidence interval; ULCI: upper-level confidence interval; B: unstandardized coefficient; SE: standard error. Modeling 
intention, perceived behavioral influence, and perceived expertise were transformed for normal distribution. Effects of self-efficacy and attitudes 
toward interaction with robots were controlled. 
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social presence, identification, and modeling intention, B = 0.02, LLCI = 0.0002, ULCI = 0.06. Thus, H4 was supported. 
To test H5, results from serial mediation suggested that compared to a fellow role, the social robot in an instructor’s role was more 

likely to have indirect effects on participants’ modeling behavior through their perceived expertise of the robot and modeling 
intention, B = 0.24, LLCI = 0.02, ULCI = 0.60. H5 was supported. 

To test H6, results suggested that compared to a fellow role, the robot in an instructor role was more likely to have indirect effects 
on participants’ modeling behavior serially through perceived expertise, trust, and modeling intention, B = 0.05, LLCI = 0.002, ULCI 
= 0.13. H6 was supported. The results of the tested relationships were shown in Table 1. Other indirect, direct, and total effects tested 
in each mediation model were shown in Appendix C of the Supplementary Materials https://osf.io/bhsr6/? 
view_only=e148010832b74c3d9246ffa45a1e7432. 

To examine RQ1, results from two-way ANCOVA suggested that there was no interaction between the behavioral outcomes and 
social roles in affecting participants’ modeling intention, F(2, 120) = 0.46, p =.63, or modeling behavior, F(2, 120) = 1.41, p =.25. 
However, based on reviewed literature, it should be users’ perceptions of the robot’s behavioral influence (i.e., expected outcomes) 
and expertise that exert effects on modeling intention and behavior. Hence, post hoc analyses were conducted to examine the 
interaction between participants’ perceived behavioral influence and perceived expertise. Results from the Process macro Model 1 
suggested that although the overall interaction effect on modeling intention was not significant, B = -0.01, p =.13, LLCI = -0.02, ULCI 
= 0.002, the Johnson-Neyman probe suggested that the interaction between perceived behavioral influence and perceived expertise 
transitioned between statistically significant and non-significant at the value of perceived expertise being 4.46, meaning that for those 
who did not feel or only moderately felt that the robot was specialized in garbage recycling, the relationship between perceived 
behavioral influence and participants’ modeling intention was statistically significant, while for those who strongly felt that the robot 
was an expert in garbage recycling, the relationship between perceived behavioral influence and participants’ modeling intention was 
not statistically significant (see Fig. 3). The overall interaction effect on modeling behavior was not statistically significant, B =
-0.0004, p =.17, LLCI = -0.001, ULCI = 0.0002. The Johnson-Neyman probe suggested that there was no statistical significance 
transition point within the observed range of the data. The overall psychological mechanisms behind individuals’ modeling behavior 
were presented in Fig. 4. 

5. Discussion 

While ample research has centered on how social robots can be designed with humanlike appearances, voices, or language styles to 
mimic human beings and to enhance user experience and communication effectiveness, this study takes an opposite approach and 
focuses on how social robots can be used as role models to encourage individuals’ modeling behavior. Drawing on the tenets of SCT and 
TME, this study suggests that social robots’ presentation of behavior with positive consequences, or mere behavior with no outcomes, 
exerts indirect effects on individuals’ modeling behavior. Such modeling behavior occurs serially through users’ perceptions of 
behavioral outcomes, social presence experience, and their identification with social robots. Moreover, this study follows past calls for 
more discussion about the effects of robots’ social roles and suggests that social robots in an instructor role are more likely than those in 
a fellow role to evoke users’ modeling behavior sequentially through users’ interpretation of robots’ expertise, trust in social robots, 
and modeling intention. 

5.1. Behavioral outcomes 

This study first indicated that compared to negative behavioral outcomes, a social robot’s positive behavioral outcomes were more 
likely to lead to users’ modeling behavior serially through their perceptions of behavioral consequences and modeling intention. This 

Fig. 3. Interaction between perceived behavioral influence and perceived expertise on modeling intention.  
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finding not only supports SCT, where individuals are motivated to model behavior through their expectations of valued consequences 
rather than undesired ones (Bandura, 2009), but also confirms prior findings that users can act in conformity with digital agents’ 
behavior (Takayama et al., 2009; Zanatto et al., 2020). Given that research on TME has not investigated how individuals may transfer 
social learning behavior from interpersonal or mass communication contexts to HCI contexts, this finding can contribute to TME in that 
users are capable of learning behavior by treating social robots as role models just as they do with human models. 

The study further indicated that even without behavioral outcomes, merely letting a social robot present the recycling behavior had 
indirect effects on users’ modeling behavior through perceived behavioral consequences and modeling intention. Consistent with the 
early Bobo Doll experiment finding that without rewards or punishments, children can still model adults’ actions (Bandura et al., 
1961), the current finding implied that without behavioral outcomes, participants might have assumed that the robot’s behavior was 
correct and thus would lead to positive consequences. Indeed, the mean value of participants’ perceived behavioral influence in the 
behavior with no outcome condition (M = 4.51, SD = 0.76) was only slightly lower than that in the positive behavioral outcomes 
condition (M = 4.60, SD = 0.50), which lent support to the surmise that participants formed positive expectations of NAO’s actions. On 
top of that, the effects of behavior with no outcomes on users’ modeling behavior are congruent with the perception-behavior link, 
where scholars have found that merely perceiving others’ actions per se is sufficient to lead to the imitation of those actions (Chartrand 
& Bargh, 1999). 

To better understand individuals’ psychological processing of social robots’ behavior and the concomitant behavioral outcomes, 
this study tested the roles of social presence and identification in social robots’ modeling effects. Results suggested that when par
ticipants perceived positive behavioral consequences, modeling effects occurred either sequentially through users’ social presence and 
identification with the robot, or only through their identification with the robot. That is, aligned with Fox and Bailenson’s (2009) 
research on the role of identification in the Proteus effect, this study indicates that when learning from social robots, the degree to 
which individuals relate to those technologies is a key factor in determining their modeling tendencies. 

Our study further revealed that when a social robot demonstrated behavior with positive outcomes or no outcomes, modeling 
effects occurred serially through social presence and identification, meaning that perceiving social robots as if they were social actors 
was an important antecedent for individuals to identify with the social robot. This finding first corroborates previous TME literature in 
which users’ social responses to technologies emerge through their perceptions of technologies as social actors (Lee et al., 2006; 
Lombard & Xu, 2021). More importantly, this is a novel finding about the application of SCT in HRI contexts because prior SCT 
research has primarily expounded the key role of identification in vicarious learning, whereas the role of social presence has been 
largely overlooked. The incorporation of social presence in this study demonstrates that individuals’ imitation behavior may hinge 
upon their experience of artificial actors as real social actors (Lee, 2004). 

What merits attention here is that although social presence was not a necessary factor in leading to users’ modeling tendencies 
when the social robot presented behavior with positive outcomes, it played an indispensable role in users’ modeling process when the 
robot presented behavior with no outcomes. This means when a machine explicitly presents its behavioral consequences, users can 
learn through these consequences without having to perceive it as a social entity. However, when a machine only performs certain 
actions without demonstrating any succeeding effects, users will be reluctant to model its behavior unless they perceive the machine as 

Fig. 4. Findings of the Serial Mediation Analyses.  
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an intelligent and communicative social actor. This finding provides a more nuanced understanding of the application of SCT in HRI 
and reflects that humans’ vicarious learning in HRI is similar to that in interpersonal or mass communication contexts when behavioral 
outcomes are available and perceptible. However, such learning process requires the additional but imperative trigger of social 
presence when behavioral outcomes are not observable to users. 

5.2. Social roles and interaction effects 

This study further suggested that assigning a social robot an instructor role was more effective than assigning it a fellow role in 
evoking users’ modeling tendencies. This process occurred through the degree to which users perceived the robot to be knowledgeable 
and specialized in the collaboration task. Although past works have examined the influence of social robots as teachers on students’ 
learning performances (Edwards et al., 2016), this study parses out such influence and highlights that it is indeed users’ perceived 
expertise that triggers their modeling tendencies. 

To further unfold the psychological mechanism underlying the relationship between social robots’ social roles and users’ modeling 
behavior, this study demonstrated that a social robot’s instructor role imposed indirect effects on users’ modeling tendencies serially 
through users’ perception of expertise and users’ trust in the robot. The finding can add to the current academic conversation about 
whether a more hierarchical human-robot relationship or a more equal relationship is more effective in promoting pro-social behavior. 
Deviating from prior research where users relied more on social robots as peers than as supervisors (Hinds et al., 2004), the current 
finding hints that, at least when a human-robot collaboration task requires certain levels of authority and competency, users will be 
more likely to trust a specialized robot than a fellow one, even if the specialization is arbitrarily assigned. 

Our findings concerning the interaction effects demonstrated that users’ perceived expertise was a contingent moderator (see 
Holbert & Park, 2020) in the relationship between perceived behavioral influence and users’ modeling intentions. That is, for those 
who did not feel or only moderately felt that the robot was knowledgeable about garbage recycling, the more positive the perceived 
behavioral influence, the more willing they were to model the robot’s behavior. However, for those who felt strongly about the robot’s 
expertise in garbage recycling, the positive effect of perceived behavioral influence faded away. One possible explanation is that users 
became completely confident in and over-reliant on the robot’s choices, which disincentivized them to shoulder responsibilities and 
learn the behavior themselves. This explanation can be supported by Hinds et al.’s (2004) finding that users felt less responsible when 
cooperating with a supervisor robot compared to a peer or subordinate robot. 

5.3. Theoretical and practical implications 

The findings of this study can spark pivotal developments in theory construction. First, prior research on SCT has been dominantly 
focused on users’ vicarious learning in the contexts of mass and interpersonal communication. By discussing the ramifications of 
behavioral outcomes presented by social robots, this study is one of the first to put forward that SCT holds its predictive power in HRI. 
Furthermore, this study is pioneering in its contribution to the explanatory mechanism of SCT in HRI. Specifically, identification plays 
a necessary mediating role in social robots’ modeling effects. Meanwhile, social presence is an imperative precursor to identification 
when social robots demonstrate modeled behavior without explicitly indicating the behavioral consequences. 

Second, prior literature on TME has examined how social psychological findings, such as similarity attraction and reciprocity rules, 
can be replicated in HCI (Reeves & Nass, 1996). However, little research has been conducted regarding whether users could learn 
vicariously from social robots as they do from humans. This study endorses the heuristic value of TME and expands its scope by 
demonstrating that users do transfer interpersonal learning scripts to HRI and treat social robots as if they were human role models. 
Moreover, adding users’ interpretation of robots’ expertise to the equation, this study delineates the specific contingencies under 
which users’ mimicking behavior is leveraged by their perceived behavioral outcomes. 

The study also has rich practical implications. First, social robots can be used as role models to promote pro-social behavior like 
environment protection. Developers can consider designing positive behavioral consequences into robots’ movements. If behavioral 
consequences cannot be delivered, designers can try embedding richer constellations of social cues and greater levels of communi
cative capabilities into robots to elevate users’ social presence experience, as social presence is a necessary psychological component 
that indirectly leads to users’ modeling tendencies when behavioral consequences are not observable. Even when social robots are used 
only for display in public spaces, demonstrating negative outcomes of a prototype behavior may increase users’ learning interest and 
raise public awareness of the actions that have negative social impact. 

Second, this study informs user experience design by demonstrating that even the arbitrary assignment of an instructor role to 
social robots can evoke users’ modeling tendencies. Developers should therefore focus on using robots’ messages or behavior to in
crease its perceived expertise and authority to promote pro-social behavioral change. Given the contingency of the interaction effects, 
developers should also be cautious in establishing robots’ expertise in that users’ over-reliance on robots’ specialization may inversely 
decrease their own learning motivations. 

Third, researchers should pay full attention to the potential ethical risks of manipulating social robots’ behavior and social roles. 
For instance, companies or research institutions can develop ethical codes to prevent designers from utilizing robots to demonstrate 
anti-social messages or behavior. They should also carefully explain the potential influence of robots’ behavior and messages when 
these robots are used in public sphere to guide users’ behavior. 
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6. Conclusions and limitations 

Turing’s (1950) question “Can machines think?” marks a significant starting point for the academic discussion of artificial intel
ligence. While the past HCI paradigm has focused on how machines can be programmed, simulated, and trained to simulate human 
intelligence and autonomy, there has been a gap in the HRI literature regarding how humans may imitate machines and use machines 
to guide their own behavior. Therefore, this study inquires into this field and explores how social robots can be set as models to 
encourage users’ modeling behavior. Although more research is needed to pave the way for a deeper understanding of social robots’ 
modeling effects and their concomitant perils, the results of this study revealed optimistic prospects for utilizing robots’ behavioral 
outcomes and social positions to promote pro-social behavior. 

One of the limitations of the study is that behavioral outcomes were presented via robot NAO’s verbal messages. No immediate 
tangible outcome (e.g., environmental threats, workers’ poor working conditions) was presented to participants. Unlike other SCT 
studies where punishments or rewards could be observed immediately, a lack of immediate incentives or disincentives might have 
inhibited participants from fully recognizing the importance of the behavioral consequences and thus rendered the effects of 
behavioral outcomes indistinct. Future research could adopt other forms of social robots, e.g., Pepper, on which a video screen can be 
used to display short clips about the vivid and real-time behavioral outcomes. 

Second, due to technical difficulties, this study adopted a symbolic garbage recycling task. Future research can further augment the 
external validity and allow users and robots to sort real garbage into different recycling bins. 
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