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Abstract
Social cues have been construed as an important concept in human–robot interaction, as they can be manipulated to reflect
robots’ perceived genders, personalities, emotions, identities, and so on. This study seeks to understand the overall effects of
social cues and applies two meta-analyses to explore a hierarchy of social cues that elicits different degrees of users’ social
responses. A total of 25 and 44 effect sizes were calculated to represent the respective magnitudes of the effects of social cues
on users’ social presence (N = 2498) and trust in social robots (N = 4147). Results suggested that although the overall effects
of social cues were small, manipulating social robots’ facial and kinetic cues can induce medium-to-large-sized effects on
users’ social presence and trust. In addition, the overall positive effect sizes of social cues indicated that designing humanlike,
natural, and lifelike cues was effective in evoking users’ social presence and trust in social robots. The results of the two
meta-analyses can contribute to the theoretical implications of the Computers are Social Actors paradigm and the practical
and methodological design of human–robot interaction.

Keywords Social cues · Social robots · Social presence · Trust · Meta-analysis · Computers are Social Actors paradigm ·
Artificial intelligence

1 Introduction

The Computers are Social Actors (CASA) paradigm was
proposed in the early 1990s to describe a series of human—
computer interaction (HCI) practices in which users treat
computers as if they were social actors. As some examples,
past work has suggested that users apply politeness rules to
interaction with computers [91], assign gender stereotypes
to computers [89], and demonstrate strong preferences for
collaboration with computers that are perceived as team-
mates [90]. Based on the findings of the CASA paradigm,
Reeves and Nass expanded the research scope to more media
technologies including televisions and formally proposed the
Media Equation to suggest that users’ responses to technolo-
gies are fundamentally social and natural [102].
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At the core of users’ social responses to technologies is the
role of social cues in constituting the characteristics of these
technologies. Social cues are defined as “biologically and
physically determined features salient to observers because
of their potential as channels of useful information” [30,
p. 2]. In interpersonal communication, social cues include
but are not limited to one’s eye gaze, appearance, facial
expressions, movements, and gestures. These cues have been
widely adopted and designed into social robots to enhance
their usability and communication efficiency. For example,
the widely used social robot NAO, developed by Aldebaran
Robotics, is equipped with eye gaze, hand movements, lan-
guage abilities, and synthetic voices. The zoomorphic robot
Spot, invented by Boston Dynamics, is designed with a
dog-like shape and capabilities of walking and running. Fur-
thermore, Hiroshi Ishiguro’s android Geminoid serves as a
prototype of the replica of Ishiguro himself and consists of
a constellation of subtle non-verbal cues such as frowns,
blinks, and haptic feedback.

Combinations of social cues may be translated into social
signals, which are referred to as the meaningful interpre-
tations of the social cues [30]. Examples of social signals
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include perceived emotions, personalities, identities, com-
petency, interactivity, and so on. For instance, the control
of movement speed and frequency can constitute users’ per-
ception of the personality of a social robotic technology [66].
Therefore, to understand how social robots exhibit the social
signals such as personalities and emotions, and how these
social signals influence users’ social responses, it is crucial
to first uncover the power of social cues that construct the
human features of these social robotic technologies.

While the effects of social cues have been documented in
research on various technologies such as computers, chat-
bots, voice assistants, and telepresence robots [9, 49, 134],
limited research has directly responded to Nass and Moon’s
call for studies on whether some social cues are more pow-
erful than others in eliciting social perception, attitudes,
and behavior [87]. As was argued by Nass and Moon [87],
“perfect implementations of technologies mimicking human
characteristics may generate powerful social responses, but
it is not all clear whether ersatz versions of these technolo-
gies are close enough to elicit more social responses than
would have occurred in their absence” (p. 97). Although
there has been some research that distinguishes the dif-
ferent effects between voice and text [20], gestures and
movements [136], and human voices and synthetic voices
[41], there lacks a systematic organization of the existing
knowledge about the distinct effect of each social cue in the
context of human–robot interaction (HRI). Therefore, this
study aggregates prior research findings and conducts meta-
analyses to understand the effects of social cues on users’
social responses toward social robots. Specifically, twometa-
analyses were conducted to examine the strengths of the
effects of social cues on users’ social presence with and trust
in social robots. The meta-analytic approach would be useful
here as it resolves the ambiguity about the research status quo
by proffering a method for combining the existing scholarly
findings [107].

The results of the meta-analyses can make theoretical,
practical, and methodological contributions to HRI. On the
theory level, recognizing the effect size of each single social
cue could contribute to ahierarchyof thepower of social cues.
This hierarchy could lead researchers to understand how var-
ious dimensions of social robotic technologies differ in their
impacts on users’ social reactions [87]. Furthermore, past
works have sought to build stronger theoretical frameworks
to extend the CASA paradigm, which include the attempts
to distinguish social cues based on their distinct potential
for activating users’ social responses [74]. The results of the
meta-analyseswould thus validate these propositions and fur-
ther refine and update the CASA paradigm.

On the practical level, technology developers will have a
comprehensive understanding of the power of each single cue
when designing social robots. With the results of the meta-
analyses, developers may prioritize the design of certain cues

to not only manage the budget of product promotion and
development but also strategically maximize the technology
credibility and acceptance.

Methodologically, HRI researchers often need to manip-
ulate the social cues of social robots to achieve desired
differences between treatment and control conditions. The
effect sizes of social cues could inform researchers’ decision-
making in creating variances in experimental conditions.
When planning new studies, researchers can also refer to
these effect sizes to calculate desired sample sizes [59].

2 Literature Review

2.1 The CASA Paradigm and Human–Robot
Interaction

The early CASA paradigm proposes that humans respond to
computers as if they were social actors. Based on a series of
studies on computers and televisions, Reeves and Nass [103]
proposed the Media Equation to indicate that users’ interac-
tions with a range of technologies are fundamentally social
and natural. As an example of the CASA study, Nass and col-
leagues [85] labeled a television that only played either news
or entertainment programs as a specialist and another tele-
vision that played both news and entertainment programs as
a generalist. They found that participants liked the specialist
television more than the generalist one and rated the special-
ist television asmore informative and superior in their area of
expertise. A more recent study indicated that users evaluated
a phone that they had prior interaction with as more friendly
and competent, which confirms that users transfer etiquette
norms not only to computers but also to mobile phones [15].
Reeves and Nass [103] explained that individuals develop
social responses to technologies because our brain has not
evolved to distinguish technology-mediated experience and
non-mediated experience. Based on evolutionary psychol-
ogy, we interact with simulations of social actors as if they
were social and real.

In the past fewyears, theCASAparadigmhas been applied
to studies on social robots. The term “social robot” has been
explicated from various perspectives [12, 27]. For example,
Duffy [27] highlighted the physical embodiment nature of
a social robot, defining it as “a physical entity embodied
in a complex dynamic, and social environment sufficiently
empowered to behave in a manner conducive to its own goals
and those of its community” (p. 177). Similarly, Li et al. [71]
emphasized the mechanical components of a social robot
and conceptualized it as “devices with mechanical moving
parts that interact in socially appropriate ways” (p. 3). How-
ever, consensus has not been achieved regarding whether
a social robot should be physically present. For instance,
Zhao [140] defined humanoid social robots as “human-made
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autonomous entities that interact with humans in a human-
like way” (p. 405). Similarly, Fox and Gambino [33] referred
to social robots as “human-made technologies that can take
physical or digital form, resemble people in form or behavior
to some degree, and are designed to communicate with peo-
ple” (p. 295). Both definitions specify that social robots do
not necessarily need to be physically present; rather they can
assume the forms of virtual agents, conversational agents,
chatbots, or voice assistants.

Other scholars putmore emphases on social robots’ capac-
ities for social interactions. For instance, Shin and Choo
[115] argued that social robots should interact with humans
according to some social rules and social behavior. Bart-
neck et al. [8] defined a social robot as “an autonomous
or semi-autonomous robot that interacts and communicates
with humans by following the behavioral norms expected
by the people with whom the robot is intended to interact”
(p. 592). Lee et al. [63] suggested that the primary character-
istic of a social robot is to afford interactions with humans.
While scholars’ definitions of social robots may diverge on
whether they should be physically present, there have been
common characteristics among these definitions. That is,
social robots need to at least feature a certain degree of
automation and possess the capacity for social interactions
with humans.

As some examples of the application of the CASA
paradigm in social robot research, Horstmann et al. [53]
looked at participants’ reactions when they were given the
choice to switch off the robot NAO. They found that par-
ticipants were more likely to let the robot stay switched
on when the robot verbally objected to being switched off.
This study indicated that participants perceived a robot that
demonstrates both autonomy and opposition asmore human-
like and accepting. Stock-Homburg et al. [117] examined the
effect of conversational flow inHRI atworkplace. Their study
indicated that the android robot Elenoide was perceived to
demonstrate greater conversational flow than the humanoid
robot Pepper, given that the android robot Elenoide had
a higher degree of human-likeness in generating socially
engaged and interactive scripts than Pepper.

2.2 Social Cues

As the CASA paradigm was proposed over two decades ago,
in the past few years scholars have started to expand, refine,
and update the CASA paradigm to make it more theoreti-
cally tenable and testable. One approach to expand theCASA
paradigm is to center on the role of social cues.Whereasmuch
CASA literature has cast light on the effects of single social
cues, or the accumulative effects of social cues [e.g., 5, 13,
37, 83, 93, 121], limited research has systematically clari-
fied how individual social cues may exert unique influence
on users’ social responses to robotic technologies. In other

words, it remains unknownwhether there exists a hierarchyof
social cues that reflects their distinct power over users’ social
responses. In prior literature, Lombard and Xu [74] argued
that scholars should distinguish primary social cues from
secondary ones based on users’ evolution-based responses to
media technologies. Specifically, primary cues (e.g., human
voice, human shape) are sufficient but not necessary in evok-
ing users’ social responses, whereas secondary cues (e.g.,
text, machine-sounding speech) are neither sufficient nor
necessary in evoking users’ social responses. Compared to
secondary cues, primary cues are more natural, powerful,
intuitive, and salient to users’ perception of socialness. The
idea of concentrating on the quality of social cues was also
mentioned in Reeves and Nass’ [102] research, where they
noted that sight and sound dominate human perception com-
pared to other senses such as smell and touch. The cognitive
miser theory also corroborated that the degree to which an
individual perceives a social actor is contingent upon the
quality of visual cues [31]. It was found that certain facial
features such as hairstyles are sufficient to activate users’
social perception [76]. All these studies imply that some cues
may be more powerful than others in evoking users’ natu-
ral and instinctive responses to social actors. However, past
research has primarily focused on whether designing more
social cues would evoke stronger social responses. Limited
research has concentrated on the quality of single social cues.
Therefore, to systematically parse out the individual effects
of social cues, a meta-analysis of the prior findings regarding
the magnitudes of the effects of social cues can contribute to
researchers’ understanding of the hierarchy of social cues.
Below, based on prior literature, we list some major social
cues that have been studied in the contexts of HRI. Although
it is impossible to exhaust the literature on the effects of social
cues, we seek to demonstrate the major social cues that have
been designed into social robots.

2.2.1 Voice

Manipulating vocal cues has been one of the major strategies
used inHRI experiments. A human voice is often preferred to
amachine voice as it is perceived to be a natural and powerful
modality [84]. For example, Cherif and Lemoine [18] found
that users judged a virtual robotic agent using a human voice
to bemore credible than one using a synthetic voice.Xu [136]
also found that the human voice of the social robotAlphawas
more likely to evoke users’ trust than themachine voice of the
robot. Manipulating vocal cues can further help researchers
contrive perceived personalities or identities. As an example,
Torre et al. [123] found that participants perceived a robot
with a standard British vocal accent to be more credible than
thosewith other regional accents, suggesting that participants
developed their first impression of the robot based on its
perceived identity.
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The advance of text-to-speech technologies has now
allowed synthetic voices to feature paralinguistic cues such
as tones, accents, and vocal fillers [39, 139], which has
led to research that challenges the findings about the infe-
riority of machine voices to human voices. For instance,
Gong and Lai [41] found that compared to mixed speech
that combined both human and synthetic voices, a merely
synthetic voice was considered as more pleasant and articu-
late. Another study suggested that when a computer agent’s
voice and appearance did not match (e.g., a machinelike face
paired with a human voice, or a humanlike face paired with a
machine voice), participants were less likely to disclose pri-
vate information to the agent. Only when the agent presented
a congruent voice and appearance (e.g., a machinelike face
paired with a machine voice) did participants report more
trust in the agent [42]. Therefore, even if some research has
shown that human voices are more favorable, in some con-
texts, synthetic voices may trigger stronger effects on users’
social responses. Therefore, the current meta-analyses may
help discover the true effects of the vocal cues in past HRI
research.

2.2.2 Appearance

Comparing humanlike and machinelike appearances is
another theme in the manipulation of robots’ social cues
[7]. Abubshait and Wiese [2] found that compared to
robot-like agents, humanlike agents were more likely to
be perceived by users as having minds. Hinds et al. [48]
also found that participants felt less responsible for a task
when collaborating with a human-like robot than a machine-
like robot, indicating that participants attributed more trust
and closeness to the humanlike one than the machine-like
one.

Paralleling the inconsistent findings about the vocal cues
in HRI literature, humanlike appearances do not always
lead to stronger social responses than machinelike appear-
ances. The “uncanny valley” experience is a sign of users
switching from high acceptance to revulsion when a technol-
ogy appears highly humanlike but fails to perfectly mimic
human appearances [81], notwithstanding that its postula-
tion is still being tested [44]. To take another example,
Lee [62] found that although virtual agents with anthropo-
morphic cartoon images were perceived as more attractive
compared to text-based agents, they did not produce stronger
flattery effects. Therefore, even though research suggests
that humanlike appearance is closely associated with mind
attribution [6, 77], these mixed findings entail the aggrega-
tion of existing findings about the effects of appearances in
HRI.

2.2.3 Movements

Past research has suggested that humans have evolution-
based responses to the motions of objects. The Heider-
Simmel [46] experiment suggests that humans spontaneously
attributemental characteristics to animated geometric shapes
such as triangles and circles. Johansson’s [54] experiment on
users’ perception of bright dots also indicates that humans
can automatically identify human gestures even through a
limited number of spots that represent body joints. Humans’
sensitivity to movements has been further found in HRI stud-
ieswhere, for example, Li andChignell [69] tested the effects
of robot gestures and found that a bear-like robot’s simple arm
and head movements (i.e., without moveable fingers, wrists,
or elbows) can evoke participants’ emotional responses and
the perceived likeability of the robot. Similarly, Salem et al.
[109] found that a robot’s gestural behavior led tomore social
perception and future contact intentions, especially when the
meanings of the gestures were alignedwith the robot’s verbal
messages.

While the aforementioned research attests to the strong
effects of robot movements on users’ social responses, some
research has called for a closer investigation into movement
cues such as motion frequency, motion speed, or motion pat-
terns. For instance, Morewedge et al. [80] noted that people
tend to perceive robots as social actors when the robots move
at a similar speed to human movement. Xu [136] found
that gestural movements had stronger effects on perceived
attraction and future use intentions than randommovements.
Considering that movements have received growing atten-
tion in HRI [63, 121, 124], it is time that scholars gathered
prior findings to understand the true effects of kinetic cues
in HRI.

2.2.4 Language

To increase communication efficiency and effectiveness,
researchers have further added language styles including
powerful versus powerless language [3], dominant versus
compliant language [86], and anthropomorphic versus non-
anthropomorphic language [108] to robotic technologies.
Choi et al. [21] compared literal language and figurative lan-
guage on a service robot and found that people responded
favorably toward a service robot using literal language. Lit-
eral language further increased the credibility of the robot
during its interaction with humans. Hoffman et al. [51]
manipulated language to be perceived as warm or cold and
found that the robotPepper usingwarm languagewas rated as
more likable and that the perceived warmth counterbalanced
the negative influence of the robot’s erroneous behavior.

In addition to voice, appearance, and movement, and lin-
guistic cues, scholars have used other cues to manipulate
social robots’ perceived mental, emotional, and physical
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status. These cues include but are not limited to facial expres-
sions [40, 125], eye gaze [4, 97], haptic cues [70], distance
[67], and olfactory cues [17]. As an example, Kim et al.
[57] replicated the Hawthorne effect in HRI and found that a
robot designed to demonstrate eye gaze was more effective
in leading participants to feel moral pressure and motivating
voluntary donation than a robot without such design. Thus,
in ourmeta-analyses, we include these social cues and expect
to draw conclusions based on existing research.

2.3 Social Responses

Users’ social responses to technologies include their social
perception, social attitudes, and social behavior [87, 136].
This study focuses on two dimensions of users’ social
responses to social robots: social presence and trust. Specif-
ically, social presence serves as an indicator of users’ social
perception, while trust reflects one type of users’ social atti-
tudes.Meanwhile, in prior research, social presence has been
considered as first-degree social response and trust as second-
degree social response [66], as social presence ismore related
to the identification and interpretation of the fundamental
social dimensions presented by a technology, and trust is
more related to the attitudinal response that occurs after the
recognition of the social dimensions.

These two concepts are related but different, given that
second-degree responses may not always arise concurrently
with first-degree responses [66]. This study conducts two
separate meta-analyses on the relationships between social
cues and social responses. One meta-analysis centers on the
effects of social cues on users’ social presence experience and
the other centers on the effects of social cues on users’ trust
in social robots. Given the space limit, we did not include
other types of social responses in our meta-analyses such as
users’ future use intention, perceived attraction, or perceived
competency. That said, researchers may continue to aggre-
gate findings about the effects of social cues on various types
of social responses.

2.3.1 Social Presence

Presence research has spanned virtual reality, augmented
reality, HCI, and HRI. Presence refers to the experience in
which individuals fail to perceive or acknowledge the role of a
technology in their communication environment and respond
as if the technology was not there [73]. In other words,
presence occurs when individuals perceive the technology-
mediated experience as non-mediated. Past research has
categorized presence into two types: spatial presence and
social presence. Whereas spatial presence generally denotes
the sense of “being there” [45], social presence affords the
sense of “being with another” [10, p. 456]. To be more

precise, Lee [61] conceptualized social presence as “a psy-
chological state in which virtual (para-authentic or artificial)
social actors are experienced as actual social actors in either
sensory or non-sensory ways” (p. 44).

When explicating social presence, scholars have noticed
that users may not only perceive media characters within
technologies as social actors, but also perceive the technolo-
gies per se as social actors [73]. For example, interactions
with computers, humanoid social robots, automated teller
machines, and smart speakers all involve such experience of
(at least partially) perceiving technologies as social entities.
In these interaction processes, users may feel as if they were
interactingwith intelligent social beings, form the perception
of being with another person, and respond to them as if they
were real [10, 61, 73]

Social presence has been viewed as an important con-
cept in prior HRI research. For instance, Xu [136] examined
the effects of the social robot Alpha’s gestural movements
and non-gestural movements and found that those who had
positive attitudes toward robots felt stronger social presence
when Alpha demonstrated gestural movements, while those
who had negative attitudes toward robots reported stronger
social presence when presented with non-gestural move-
ments. Furthermore, Lee, Jung, Kim, and Kim [63] found
that the physical embodiment of a social robot had positive
effects on social presence,which further increasedusers’ pos-
itive evaluation of the robot. Similarly, Lee, Peng, Jin, and
Yan [66] found that users’ social presence of the zoomor-
phic robot AIBO can lead to its perceived social attraction
and users’ enjoyment of the interaction. Based on these stud-
ies, examining the effects of social cues on social presence
would be meaningful as social presence has often served as a
mediator between the social cues of social robots and users’
subsequent cognitive, affective, or behavioral responses [63,
66].

2.3.2 Trust

Trust refers to the perceived competence or reliability of a
person/agent [118]. In HRI studies, social cues have been
found to exert positive effects on users’ trust in social robots.
Nomura and Kanda [93] found that people were more likely
to perceive a robot as trustworthy when it was designed with
eye gaze. In addition, receiving immediate, encouraging, and
empathic feedback facilitated human–robot cooperation and
augmented the perceived trustworthiness of the robot [129].

It is necessary to understand the overall effects of social
cues on trust also because trust in robotic technologies can
further lead to attitudinal and behavioral change. Gaudiello
et al. [35] found that strengthening users’ trust in a humanoid
robot led to their acceptance of the robot as a decision-making
assistant. You and Robert [138] found that letting robots
exhibit the same workstyles as humans enhanced users’ trust
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in these robots, which increased their willingness to work
with the robot partner. Therefore, like social presence, trust
plays a key role in the relationship between social cues and
users’ acceptance of and future use intention toward social
robots. Increasing the perceived trustworthiness of social
robots may lead to users’ positive social attitudes toward
them.

Thus far, we have reviewed HRI literature on the effects
of social cues on users’ social presence and trust. We expect
the meta-analyses to be useful and illuminating insofar as
the meta-analyses can (1) inform us about the extant knowl-
edge in the HRI field, (2) convert statistical significance into
interpretable effect magnitudes, (3) minimize wasted data
and include non-significant results as part of the full picture
of the HRI research program, and (4) find moderator vari-
ables that affect the effects of social cues on users’ social
responses to social robots. As Rosenthal and DiMatteo [107]
argued, a meta-analysis can generate conclusions that are
more precise and credible than those presented in a single
study or a non-quantitative narrative review.While pastmeta-
analyses or systematic reviews on HRI have revealed that
robots’ humanlike behavior does not always affect children’s
trust in social robots and it is robot performance that acts
as the most important contributor to users’ trust [43, 118],
these studies have either only focused on the children-robot
relationship or used robot attributes as a general dimen-
sion in meta-analyses. According to Naneva et al. [82], the
influence of the design of social cues on people’s attitudes
toward robots has not been quantified or reviewed compre-
hensively. Thus, given the strengths of the meta-analytical
approach, this study is the first to examine the aggregated
effects of social cues on the first-degree social response and
the second-degree social response. Specifically, we conduct
two meta-analyses to examine the overall magnitude of the
effects of social cues on social presence and trust in HRI
contexts. We propose the following research questions in the
first meta-analysis focusing on the effects of social cues on
social presence.

RQ1: What are the overall effects of social cues on users’
social presence?
RQ2:What are the effects of individual social cues on users’
social presence?
RQ3: Which subgroup of social cues has the greatest effect
on users’ social presence?
RQ4: What factors moderate the effects of social cues on
users’ social presence?

We then propose the following research questions in the
second meta-analysis focusing on the effects of social cues
on trust.

RQ5: What are the overall effects of social cues on users’
trust?
RQ6: What are the effects of individual social cues on users’
trust?
RQ7: Which subgroup of social cues has the greatest effect
on users’ trust?
RQ8: What factors moderate the effects of social cues on
users’ trust?

3 Method

The procedure below follows the steps in Rosenthal and
DiMatteo’s [107] seminal work on meta-analysis and the
PRISMA (PreferredReporting Items for SystematicReviews
and Meta-Analyses) protocol, which offers a checklist to
help researchers conduct and report results from the meta-
analyses [79].

3.1 Selection of the Literature

To identify academic articles that focus on the effects of social
cues on trust and social presence, four online databases were
used to search the literature: PsycINFO, EBSCO Host Com-
munication and Mass Media Complete, Web of Science, and
ACM Digital Library. The search included all the articles
available in these databases up to May 13, 2020 (i.e., the
ending date of this project). These databases were selected
because they are the most widely used databases in psychol-
ogy, communication, computer science, information science,
and engineering. Similar search strategies have been used in
prior research [26, 32, 96, 110]. As researchers use various
terms to refer to social robots, social cues, social presence,
and trust, we expanded our search scope to include all the
relevant articles. The search for literature on social robots
included articles about chatbots, virtual assistants, conversa-
tional agents, and other relevant technologies. The search for
literature on social cues included articles about robot appear-
ances, faces, kinetic cues, eye gaze, and so on. To include all
literature on social presence, we included articles not only
about social presence but also about social responses. The
search for literature on trust was focused on terms related
to trust and credibility. Overall, our search strategies were
combined using the following Boolean expression: ("social
robot*" OR "social bot*" OR machin* OR chatbot* OR
"virtual assistant*" OR "computer agent*" OR "voice assis-
tant*" OR "voice agent*" OR "conversational agent*") AND
("social cue*" OR shape OR appearance* OR fac* OR "eye
gaz*" OR "eye contact*" OR gestur* OR kine* OR sound*
OR voic* OR vocal OR language* OR speech* OR move*
OR motion* OR "physical distance" OR spac* OR text*)
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AND ("social presence" OR "social response" OR trust* OR
credib*).

3.2 Inclusion Criteria

After determining the search terms, inclusion criteria were
established to select articles from the search results. Each
study should meet the following criteria: (1) It is a peer-
reviewed journal article or conference proceeding (e.g., CHI
proceedings, IEEE proceedings). (2) It includes quantitative
measurement of social presence or trust. (3) It contains the
manipulation of at least one social cue as the independent
variable. (4) The study is conducted in the context of human-
social robot interaction. Research on deep learning systems,
algorithms, and the manipulation or operation of industrial
robots is excluded from the analyses. (5) It includes sufficient
details to calculate effect sizes. (6) It is published in English.

After applying the initial search strategies, 4368 articles
were retrieved and uploaded to Covidence, an online man-
agement tool for title/abstract screening, full-text screening,
data abstraction, and quality assessment. We first removed
1251 duplicated articles. Next, two trained research investi-
gators separately checked the titles and abstracts of all the
remaining 3117 articles. If their votes yielded inconsistent
results, a third investigator on Covidence would vote for
the qualification of the article. After this procedure, 2888
articles were disqualified, leaving 229 articles for full-text
screening. The same voting process was then repeated using
Covidence. Among these articles, 66 were excluded due to
a lack of social cues as independent variables, along with 49
articles excludeddue to a lackof social presence or trust being
used as dependent variables. Additionally, a total of 46 arti-
cles were removed because they did not involve quantitative
measurement of the variables, and 13 articles were removed
because they were not examining social robots (e.g., studies
on deep learning). Seven articles were excluded because they
were not full papers. In addition, five articles were removed
because their dependent variables used behavioral indicators
such as resource allocation [e.g., 123], three articles were
excluded because they did not provide sufficient information
to determine the statistical relationships among variables,
and one article was removed because the authors reported
the same data in another publication. The remaining 39 arti-
cles were included for coding. The diagram for the literature
search and screening is shown in Fig. 1.

3.3 Variable Coding

A coding scheme was developed to extract the details of
the eligible studies. The coded variables included the main
findings of each study along with its method (e.g., survey,
experiment),within/between-subjects design, conceptualiza-
tions and operationalization of independent variables and

dependent variables, valence of the relationship, sample size,
group size, study settings (e.g., university, MTurk), sample
demographics, mean values, standard deviation, t values, F
values, correlation r, regression results, type of social robots,
study tasks/contexts, sample location, and major theoreti-
cal frameworks. During this coding process, if essential data
were not reported, we contacted the authors to request more
information. If the authors did not respond, we excluded the
studies from our sample (n = 3).

As various types of social cues were examined in these
studies, we categorized them into six subgroups: the effects
of appearance cues (e.g., humanlike robots vs. machinelike
robots), facial cues (e.g., robotswith eye gaze vs. robotswith-
out eye gaze), vocal cues (e.g., human voices vs. machine
voices), language cues (e.g., anthropomorphic language
vs. non-anthropomorphic language), movement cues (e.g.,
smooth movements vs. non-smooth movements), and others
(e.g., touch allowed vs. no touch allowed). Details from each
study were presented in Appendix 1a and Appendix 1b.

3.4 Effect Size Calculation

Wereferred toRosenthal andDiMatteo’s [107] recommenda-
tion of using the Pearson correlation r to compute effect sizes.
While correlation r and Cohen’s d can be easily converted to
each other, using r has several advantages: (1) based on one
degree of freedom, r allows for a representation of the con-
tinuous relationship between the independent variables and
the dependent variables; (2) r is simpler to interpret when
researchers need to refer to the variance of the factor effects
[107].

As some studies tested both social presence and trust, we
treated each dependent variable as a unit of analysis [32].
If a study reported the effect sizes, we directly used them
and converted them to r. When effect sizes were not reported
in the study, we searched for t values or F values with one
degree of freedom, as both can easily be converted to r scores
[107]. When F or t values were not provided, we searched
for the group size, mean values, standard deviation of the
compared conditions, computed d, and converted to r [11].
If a dependent variable was measured with different scales
(e.g., affective trust and cognitive trust), their respective r
values were standardized through Fisher Z transformation,
averaged, and converted back to a single r [26]. If none of
these values was provided, we further searched for p values
or p range, as these p statistics can be converted to one-
tailed standard normal deviate Z scores, which can further
be transformed to r [107]. If the study only reported that
the results were non-significant, we first assigned zero to
the effect size of the study (i.e., zero-coded), which led to
an underestimated overall effect size. We then removed this
single effect size from the sample (i.e., max-coded), which
led to an inflated effect size. Hence, a range of the effect
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Fig. 1 PRISMA flow diagram of
the literature search and
screening

sizes could be obtained to account for the studies that merely
reported non-significant results [106, 114].

The direction of the effect sizes depends on the compar-
isons of the groups. We decided that more natural, lifelike,
or humanlike cues were compared against unnatural, artifi-
cial, or machinelike cues. For example, r was coded positive
when humanlike social robots evoked stronger social pres-
ence than machinelike robots, whereas it was coded negative
whenmachinelike robots exerted stronger influence. Follow-
ing the Johnson and Eagly [55] perspective that if multiple
levels of comparisons aremade in a study, one could compare
themeans of the high and the low levels, in ourmeta-analyses,
if multiple levels of social cues were manipulated in a study,
we compared the most humanlike manipulation against the
most machinelike one. Specific comparisons were provided
in Appendix 1.

After correlation r was calculated for each effect size,
we transformed the value into a Fisher Z score to normal-
ize the distribution [24]. Then the unweighted value Zr was
weighted by N − 3 in each study to ensure that studies
with larger sample sizes received greater weight. Next, both
unweighted Zr andweighted Zrwere averaged and converted
back to r to form unweighted effect sizes and weighted

effect sizes for all studies and each subgroup of studies. The
random effects confidence interval was calculated based on
the unweighted mean of Zr [107].

3.5 Effect Size Interpretation and Analyses

We referred to Cohen’s [22] convention that a correlation
coefficient of 0.10 should be interpreted as a small effect size,
0.30 as a medium effect size, and 0.50 as a large effect size.
We also conducted analyses of how each subgroup effect size
differed from the others. Two independent subgroup effect
size r values and their respective sample sizeswere converted
to a Fisher Z score [23]. The value and the significance of
the Z score indicate which effect size is significantly larger
than the other based on two different sample sizes.

We conducted heterogeneity tests based on random-
effects models for overall effect sizes and each subgroup
effect size [11]. Randomeffectsmodels allow for the assump-
tion that the studies are randomly sampled from a population
of studies and can be generalized to this population [55].
Q-statistics were computed using the R package metaphor.
The Q-statistic is a Chi-squared test with k − 1 degrees of
freedom, which reflects the heterogeneity of variance in the
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effect sizes. A significant result on the Chi-squared test indi-
cates that the true effect size variance was not only caused
by sampling error but also by potential moderators. To quan-
tify the percentage of the true effect size that is attributed to
the between-study variance, I2 was computed. I2 describes
the percentage of total variance across studies that is due to
the inconsistency of effects rather than chance [47]. If I2 is
greater than 75%, considerable heterogeneity is present. If I2

is below 40%, the studies in the analysis are homogeneous
[24]. I2 is 0% if there is no observed heterogeneity [47].
Meta-regression was used to calculate the effects of moder-
ators on effect sizes.

4 Results

As some articles include multiple studies, among the 39 arti-
cles included for the meta-analyses, a total of 25 studies (N
= 2498) examined the relationship between social cues and
social presence. A total of 44 studies (N = 4147) examined
the relationship between social cues and trust. To examine
the overall effects of social cues on users’ social presence
and trust, both unweighted effect size r and weighted effect
size r were computed. Below we report the weighted effect
sizes.

4.1 Meta-Analysis 1: Effects of Social Cues on Social
Presence in HRI

To examine the overall effects of social cues on social pres-
ence in HRI (RQ1) and the effects of individual social cues
(RQ2), the meta-analysis suggested that the social cues of
social robots had small-sized effects on users’ social pres-
ence (0.17 ≤ r ≤ 0.18). The subgroup analyses revealed that
the appearances of the social robots had very limited effects
on social presence (0.07≤ r ≤ 0.08). Manipulating the voice
(r = 0.16) and language (r = 0.12) had small-sized effects on
social presence. Additionally, movement cues had small-to-
medium-sized effects on social presence (0.24 ≤ r ≤ 0.30).
Facial cues had large-sized effects (r = 0.69), and other types
of cues (r = 0.45) including haptic cues had medium-sized
effects on social presence. Results are shown in Table 1.

To understand which subgroup of social cues had the
largest effect on social presence (RQ3), Fisher Z scores were
calculated to examine whether the effect sizes of individ-
ual social cues were significantly different from each other.
Results suggested that with regard to social presence, facial
cues had the largest effect size, followed bymovement, voice,
language, and appearance cues. Statistically, facial cues had
significantly larger effect sizes than any other category of
social cues. However, considering the small sample of the
study on facial cues (k = 1), movement cues merit more
attention as they had significantly larger effects than voice,

language, and appearance cues on users’ social presence (see
Table 2).

To understand what factors moderated the effects of social
cues on social presence (RQ4), heterogeneity tests were con-
ducted using the Q-statistic and I2. A Chi-square test of the
Q-statistic suggested that additional moderators affected the
true effect size variance. As shown in Table 1, the hetero-
geneity tests for the overall effects of social cues on social
presence were significant, p < 0.001. Among the subgroup
social cues, only the effects of language cues on social pres-
ence were homogeneous.

Potential moderators were searched to examine if they
account for the between-study variance of the true effect
sizes. Based on prior literature [106], year of publication
(i.e., recency of the publication time), the mean age of the
sample, gender distribution, the embodiment of the social
robots, the physical presence of the robots, sampling char-
acteristics (i.e., whether the participants were recruited from
universities), and task properties (i.e., whether participants
were asked to interactwith the technologies)were included as
moderators. Results frommeta-regression suggested that the
selected moderators did not affect the relationship between
social cues and social presence.

4.2 Meta-Analysis 2: Effects of Social Cues on Trust
in HRI

To examine the overall effects of social cues on users’ trust
(RQ5) and the effects of individual social cues (RQ6), the
meta-analysis suggested that overall, the social cues had
small-sized effects on users’ trust in social robots (0.14 ≤
r ≤ 0.17). The subgroup analyses suggested that manipulat-
ing social robots’ appearances (0.10≤ r ≤ 0.12), voices (r =
0.13), language (r = 0.22), and facial cues (0.17 ≤ r ≤ 0.28)
had small-sized effects on social robots. By contrast, move-
ment cues (0.20 ≤ r ≤ 0.31) and other types of cues (0.08 ≤
r ≤ 0.34) had small-to-medium-sized effects on users’ trust
in social robots. Results are shown in Table 3.

To understand which subgroup of social cues had the
largest effect on trust (RQ7), Fisher Z scores were calculated
to examine whether the effect sizes of the individual social
cueswere significantly different fromeachother.Results sug-
gested that using the lower boundary of the effect sizes (i.e.,
when effect sizes were zero-coded), language had the largest
effect onusers’ trust in social robots, followedbymovements,
facial cues, voices, and appearances. However, the effect of
language cues was not significantly larger than the move-
ment cues. Using the upper boundary of the effect sizes (i.e.,
when effect sizes were max-coded), the analyses suggested
that movement cues had the largest effect, followed by the
effects of facial cues, language, voice, and appearance cues.
The effect of movement cues was also not significantly larger
than the facial cues. Combining zero-coded and max-coded
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Table 1 The meta-analysis results for the effects of social cues on social presence

Independent variables K Unweighted r Weighted r 95% CI N Q I2 (%)

Social Cues (zero coded) 25 .272 .173 [.162, .375] 2498 104.81*** 85.75

Social Cues (max coded) 23 .294 .180 [.179, .401] 2402 101.95*** 86.85

Appearance (zero coded) 4 .106 .065 [− .341, .513] 239 25.79*** 91.22

Appearance (max coded) 3 .140 .080 [− .470, .660] 191 25.56*** 94.20

Voice 7 .195 .160 [.079, .306] 1215 15.72* 68.30

Language 5 .137 .119 [.054, .218] 627 4.05 .02

Movement (zero-coded) 4 .331 .236 [− .066, .638] 230 25.70*** 87.90

Movement (max-coded) 3 .429 .295 [− .034, .742] 182 22.41*** 88.46

Facial cues 1 .693 .693 [.402, .857] 24 N/A N/A

Others 4 .508 .448 [.343, .642] 163 3.78 17.57

K: the number of effect sizes; CI: confidence interval;Q-statistics: Chi-squared scores withK − 1 degrees of freedom; I2: the percentage of variation
across studies that is due to heterogeneity. Rows that do not differentiate zero-coded versus max-coded mean that no studies in the subgroup need
zero or max coding
*p < .05; ***p < .001

Table 2 Comparisons of the effect sizes of social cues on social presence

Appearance (0) Appearance (max) Voice Language Movement (0) Movement (max) Facial cues

Appearance (0) N/A

Appearance (max) N/A N/A

Voice − 1.35 − 1.04 N/A

Language − .71 − .47 .85 N/A

Movement (0) − 1.89* − 1.63 − 1.09 − 1.56 N/A

Movement (max) − 2.41** − 2.14* − 1.78* − 2.18* N/A N/A

Facial cues − 3.46*** − 3.36*** − 3.15** − 3.31*** − 2.69** − 2.38** N/A

(0): the cue was zero coded. (max): the cue was max coded. Each value represents a Z score computed using the weighted r and sample size of each
feature. Whether zero-coded or max-coded, the effects of cues are ranked as follows: facial cues > movement cues > voice > language > appearance
*p < .05; **p < .01; ***p < .001

results, overall, language cues, movement cues, and facial
cues tended to exert larger effects than voice and appearance
cues (See Table 4).

To understand what factors moderated the effects of social
cues on trust in HRI (RQ8), as shown in Table 3, the hetero-
geneity tests for the overall effects of social cues on trust
were significant, p < 0.001. Only the effects of language
cues and appearance cues were homogeneous. The same
moderators selected for meta-analysis 1 were included for
meta-regression. Results suggested that physical presence
positively predicted the zero-coded effects of social cues on
trust,B= 0.26, p= 0.013 and themax-coded effects of social
cues on trust, B = 0.27, p = 0.022. The gender distribution
negatively predicted the zero-coded effects on trust, B = −
0.82, p = 0.002, and the max-coded effects on trust, B = −
1.40, p < 0.001, meaning that samples with more female par-
ticipants were more likely to influence the effects of social

cues on users’ trust. In addition, university samples nega-
tively predicted the zero-coded effects on trust, B = − 0.30,
p = 0.002 and max-coded effects on trust, B = − 0.31, p
= 0.003, meaning that college students were less sensitive
to the social cues presented by technologies. Results of the
moderator analyses are shown in Table 5. Results of publi-
cation bias and forest plots are attached in Appendix 2 and
3.

5 Discussion

This study applied two meta-analyses to parse out the sta-
tus quo of HRI research on the effects of social cues on two
types of social responses: social presence and trust. Over-
all, social cues were found to have small-sized effects on
both users’ social presence with and trust in social robots.
Although the overall effects of social cues were small, the
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Table 3 The meta-analysis results for the effects of social cues on trust

Independent variables K Unweighted r Weighted r 95% CI N Q I2 (%)

Social Cues (zero coded) 44 .135 .138 [.084, .185] 4147 73.15** 42.08

Social Cues (max coded) 35 .178 .173 [.120, .234] 3432 65.46*** 46.66

Appearance (zero coded) 13 .055 .104 [− .041, .150] 912 15.58 1.64

Appearance (max coded) 11 .065 .12 [− .042, .172] 789 14.10 .01

Voice 8 .162 .127 [.059, .262] 1456 20.53** 68.94

Language 7 .228 .222 [.119, .331] 510 4.62 .00

Movement (zero-coded) 8 .135 .203 [− .004, .270] 567 16.89* 55.99

Movement (max-coded) 4 .266 .310 [.123, .397] 360 4.03 33.69

Facial cues (zero-coded) 6 .198 .174 [.039, .346] 473 12.75* 59.44

Facial cues (max-coded) 4 .292 .277 [.153, .419] 293 4.07 29.98

Others (zero-coded) 2 .173 .079 [− .166, .475] 99 1.98 49.60

Others (max-coded) 1 .336 .336 [− .078, .651] 24 N/A N/A

K: The number of effect sizes; CI: confidence interval; Q-statistics: Chi-squared scores with K − 1 degrees of freedom; I2: The percentage of
variation across studies that is due to heterogeneity. Rows that do not differentiate zero-coded versus max-codedmean that no studies in the subgroup
need zero or max coding
*p < .05; **p < .01; ***p < .001

Table 4 Comparisons of the effect sizes of social cues on trust

Appearance
(0)

Appearance
(max)

Voice Language Movement
(0)

Movement
(max)

Facial cues
(0)

Facial cues
(max)

Appearance
(0)

N/A

Appearance
(max)

N/A N/A

Voice − .55 − .16 N/A

Language − 2.19* − 1.85* − 1.90* N/A

Movement
(0)

− 1.89* − 1.55 − 1.58 .325 N/A

Movement
(M)

− 3.46*** − 3.13** −
3.27**

− 1.37 N/A N/A

Facial cues
(0)

− 1.26 − .95 − .91 .78 .48 2.06* N/A

Facial cues
(max)

− 2.67** − 2.39** −
2.44**

− .80 − 1.09 .46 N/A N/A

(0): the cue was zero coded. (max): the cue was max coded. Each value represents a Z score computed using the weighted r and sample size of each
feature. When zero-coded, the effects of cues are ranked as follows: language cues > movement cues > facial cues > voice > appearance. When
max coded, the effects are ranked as follows: movement cues > facial cues > language > voice > appearance
*p < .05; **p < .01; ***p < .001

positive valence of the effect sizes revealed that users expe-
rienced greater levels of social presence and developed more
trust in social robots when the HRI experience was designed
to be more humanlike, intuitive, natural, and spontaneous.
Results also suggested that appearance cues, voice cues, lan-
guage cues, movement cues, facial cues, and other types of
cues had distinct impacts on users’ social responses. Specifi-
cally, the Z scores based on the comparisons of the subgroup
effect sizes revealed that facial cues had the largest effect on

users’ social presence, followed by movement, voice, lan-
guage, and appearance cues. When it comes to users’ trust
in social robots, language cues, movement cues, and facial
cues tended to exert larger effects than other cues.

The facial cues coded in the dataset included researchers’
manipulation of both robots’ facial expressions (e.g., smiles)
and gaze features.While prior research has suggested that eye
gaze and facial expressions can trigger users’ evolution-based
responses [4, 58, 97, 111, 112], considering the small number
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Table 5 Moderator analyses of the effect sizes

Moderators Effect on social presence
(zero-coded)

Effect on social presence
(max-coded)

Effect on trust
(zero-coded)

Effect on trust
(max-coded)

B B B B

Age − .02 − .02 .01 .01

Gender distribution .33 .79 − .82** − 1.40***

Physical presence − .34 − .53 .26* .27*

Embodiment .26 .37 − .13 − .09

Interactivity .25 .34 − .10 − .10

Sample .07 .20 − .27** − .31**

Recency − .02 − .04 .01 .02

R2 .29 .60 .48* .60*

of studies on the effects of facial cues on social presence,
more research should be done to validate the effects of facial
cues in the future.

Movement cues have been manipulated in prior studies to
examine the effects of gestures or smooth motion paths [9,
121]. Movement cues were found to have small-to-medium-
sized effects on both users’ social presence and trust. These
results corroborated the Heider and Simmel [46] and the
Johansson [54] experimental findings that human beings
can intuitively and effortlessly attribute intentions to mov-
ing objects. As movements have been manipulated to reflect
social signals such as robots’ personalities or interactivity
[e.g., 25, 130, 135], researchers should consider prioritizing
the movement cues in their future experiment and product
design.

One surprising finding from both meta-analyses suggests
that appearance cues (e.g., humanlike shape, body size)
imposed small-sized effects on users’ social presence and
trust. While much literature has suggested that anthropo-
morphic robots are preferred to zoomorphic or machinelike
robots since they aremore likely to evokemind attribution [2,
72], the small effects of appearance cues could be attributed
to four reasons.One is that participantsmayhave experienced
the uncanny valley effect in some HRI contexts. That is, par-
ticipants’ attachment to anthropomorphic social robots may
have plunged when the robots seemed highly humanlike but
failed to replicate human appearances [81]. Another reason is
that some studies were testing the effects of anonymity. The
Social Identity Model of Deindividuation Effects suggests
that an anonymous online group environment may actually
enhance participants’ trust in online group members and fos-
ter their conformity to the group norms [116]. One study
included in the current meta-analysis corroborated this the-
ory. In the study, amere text box evokedmuch stronger social
presence than a computer agent visually represented by a
stick figure [64]. The third explanation lies in the possibil-
ity of participants experiencing the machine heuristic [120].

That is, when a technology interface appears machinelike,
participants may interpret the machine as objective, trust-
worthy, and reliable, which may counterbalance the positive
effects of humanlike appearances on trust. The fourth expla-
nation could be attributed to the dissolution of the novelty
effects in HRI [34]. As people may have already been used to
encountering anthropomorphic computer agents or human-
like social robots in their daily lives or through popularmedia
portrayals, themomentumof the humanlike appearancesmay
have dissipated.

Similar to appearance cues, vocal cues were found to
exert small-sized effects on users’ social responses.Although
much literature has endorsed that human voice is a more
favorable modality than synthetic voice in educational and
online shopping settings [78, 131], the effects of human
voice may not be as large as expected. Perhaps it is because
synthetic voices have been designed to be increasingly
humanlike in the past few years, which has diminished the
discrepancies. Google Duplex is a representative example in
that its AI technology carries out natural conversations to
help users make reservations and book appointments [99].

It should also be noted that in addition to appearance,
voice, language, movement, and facial cues, some other cues
such as haptic cues were identified in our coding process. For
example, having participants touch an agent’s shoulder in a
virtual environment had large-sized effects on social presence
compared to the condition where no touch was allowed [52].
Touching thewarm skin of a robot also evokedmedium-sized
effects on users’ social presence [98]. Despite small sam-
ples, the results may inform future social robotics design by
revealing that haptic cues had the potential to evokemedium-
to-large sized effects. Future HRI collaboration may also
allow users to have more opportunities to physically touch
the social robots to increase their perception of the robots as
social entities.

The moderator analyses suggest that a few factors may
account for the heterogeneity of the variance in effect sizes.
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First, the dimensions of embodiment and physical presence
have been used to categorize different types of social robotic
technologies. In prior literature, embodiment refers to the
idea that intelligence needs to exist in the form of a body
[141]. According to Pfeifer and Scheier [100], embodiment
can be realized either as a physical robot or as a virtual
agent. Comparatively, the dimension of physical presence
means whether social robots are collocated in the same
space as their users rather than merely presented in a virtual
format. According to Li [68], many HRI studies compar-
ing physical social robots and virtual agents have conflated
embodiment and physical presence. Li [68] found that it was
social robots’ physical presence (i.e., whether the robot is
physically present or virtually present) rather than embodi-
ment (i.e., whether the robot has a form of body or not) that
swayed peoples’ social responses.

Following the conceptual differences, the moderator anal-
yses inmeta-analysis 2 confirmed that while the embodiment
of a robot did not affect the overall effect sizes, the physi-
cal presence positively predicted the effects of social cues
on users’ trust, meaning that users may have attributed more
reliability and credibility to the robots when the social robots
were physically present and accessible. The results are con-
sistent with the prior finding that it was the physical presence
of a robot rather than its embodiment that induced users’
social responses [68, 132]. The finding also implied that to
best augment the effects of social cues on users’ trust in future
research, scholars could consider using more in-person set-
tings which enable users to interact with real physical robots
rather than virtually presented robots.

Second, the effect of gender distribution in our modera-
tor analyses suggests that the effects of social cues on users’
trust were more salient among female participants than male
participants. That is, when social robots were designed with
social cues, femalesweremore likely to develop trust in these
robots. The finding may have ethical implications. In partic-
ular, researchers should take caution in manipulating cues
and fully inform males and females of the different poten-
tial perils, especially when social robots are used in contexts
such as delivering fake news or misinformation.

In addition to physical presence and gender distribution,
future research should seek more moderators to explain the
heterogeneity of the variance in effect sizes. For example,
factors such as users’ prior robot use experiences, expecta-
tions for robot performances, and attitudes toward robots’
social roles have been found to affect users’ social presence
experience in prior studies [56, 95] and thus could be added
as moderators in future meta-analyses.

5.1 Theoretical, Practical, andMethodological
Implications

On the theory level, results from the two meta-analyses can
contribute to the construction of the CASA paradigm. The
CASA paradigm suggests that users respond to a range of
technologies with social cues in a social manner. However, it
remains unknownwhether some dimensions of the technolo-
gies are more powerful in evoking users’ social responses
than others [87]. The results of the meta-analyses herein
contributes to the CASA paradigm by providing accumu-
lated evidence for the distinct effects of social dimensions
on users’ social presence and trust in HRI contexts.

The hierarchy that represents the potential of social cues
for evoking users’ social responses further confirms the the-
oretical proposition that the quality of social cues plays a
significant role in HRI. Specifically, scholars have proposed
that individuals’ social perception is determined by the qual-
ity of visual inputs available to the perceivers [31, 36, 76].
Similarly, Lombard and Xu [74] suggested that there exists a
group of social cues that aremore salient and central to users’
perception of socialness than others. The meta-analytic find-
ings have not only supported these extrapolations but also
provided a direction for future research on the qualitative
nature of social cues in HRI.

Results from the meta-analyses can further inform prac-
tical applications such as user interface design. With the
hierarchy of social cues, developers can prioritize the design
of facial expressions, eye gaze, and meaningful movements
if their goal is to build a trustworthy robot that evokes users’
perception of the robot as an intelligent social actor. Embed-
ding haptic feedback would also lead to users’ perception of
a reliable and socially present robot.

Methodologically, understanding the power of each social
cue may help researchers with experimental design or sta-
tistical power computing. For instance, researchers may
foreground kinetic cues or facial cues if part of their exper-
imental design goal is to increase users’ social presence or
trust in social robots. Additionally, referring to the effect size
for each groupof social cues, researchers can conduct a-priori
power analyses to calculate the desired sample size for new
studies.

Researchers should also fully understand the ethical risks
ofmanipulating users’ responses using these social cues. This
study discovers that certain means of manipulating haptic
cues [52] or facial cues [37] may lead to medium-to-large
sized effects on users’ social responses. Thus, it is possible
that participants may be victims of deception or be sus-
ceptible to technologies that demonstrate a constellation of
these social cues. Researchers should keep participants fully
informed of the research purposes and the possible conse-
quences of HRI.
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6 Conclusions and Limitations

This study seeks to update and advance the application of the
CASA paradigm in future HRI studies. Examining the effect
sizes of social cues enables researchers to understand the
magnitude of the effects in a standardized manner. Although
a clear hierarchy of the effects of social cues needs cor-
roboration from more divergent evidence (e.g., qualitative
assessment, physiological measures), this study uses two
meta-analyses and reveals that designing humanlike, natural,
and lifelike cues is overall effective in evoking users’ social
responses such as users’ social presence and trust in social
robots. Meanwhile, among different types of social cues,
facial cues andmovement cues aremore powerful than others
in evoking users’ social presence and trust in social robots.
As one advantage of the meta-analysis, this study points the
way toward essential theoretical and practical developments
in future HRI research.

It is worth noting that the meta-analyses do not close
the door to further theory construction and scrutiny [101].
One of the limitations here was that the number of effect
sizes in some subgroups was not sufficient to reveal reli-
able results (e.g., effects of facial cues on social presence).
Although meta-analytic approaches can be applied to as few
as two studies [106], the results may be untenable when the
number of studies is low. Therefore, future research could
expand the scope of the search to include more studies on the
relationship between social cues and social responses. Sec-
ond, this study did not exhaust all the social cues that may
affect HRI. For example, embodiment and physical presence
were investigated asmoderators in the currentmeta-analyses.
Future research could systematically include these two cues
and other cues such as haptic ones and olfactory cues to
advance our understanding of HRI. Third, a future meta-
analytic approach could compare the effect sizes of social
signals that are composed of these social cues. For example,

researchers could explore whether there exists a hierarchy
that ranks the effects of the perceived personalities, iden-
tities, operation flexibilities, gender stereotypes, and other
social signals. Such knowledge may further help researchers
to explore the best strategies to design social robots that are
efficient in communication and acceptable in our daily lives.
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Table 6 Descriptive summary of sample studies on social presence

Study Year Zr N Name of DV Operationalization
of the technology

Sample location Comparisons

Vocal cues

Abdulrahman
et al.

2019 0.037 118 Co-presence Virtual human
Sarah

Australia Human versus
synthetic voice

Chérif and
Lemoine

2019 0.148 640 Perceived social
presence

Virtual assistant:
Prosper

Unknown Human versus
synthetic voice

Cho et al. 2019 0.304 84 Human-likeness Microsoft Cortana United States Voice versus text

Lee and Nass 2005 0.310 72 Social presence Voice assistant on
web interface

United States Extroverted versus
introverted voice

Lee and Nass 2005 0.483 80 Social presence Voice assistant on
web interface

United States Extroverted versus
introverted voice

Xu 2019 0.064 110 Medium-as-social actor
presence

Robot Alpha United States Human versus
synthetic voice

Xu 2020 0.037 111 Medium-as-social-actor
presence

Voice assistant on
smartphones

United States Human voice versus
text

Language cues

Araujo 2018 0.078 175 Social presence Self-developed
chatbot

Netherlands and
United States

Anthropomorphic
versus
non-anthropomorphic
language

Goble and
Edwards

2018 0.300 67 Social presence Robot NAO United States Vocal filter versus no
focal filter

Straten et al. 2020 0.188 144 Social presence Robot NAO Netherlands Neutral versus
transparent

Velner et al. 2020 0.035 130 Social engagement Robot NAO Netherlands Mixed versus no
intonation

Xu 2020 0.090 111 Medium as social actor
presence

Voice assistant on
smartphones

United States Anthropomorphic
versus
non-anthropomorphic
language

Appearance cues

Barco et al. 2020 0.752 35 Social presence Nao/Pleo/Cozmo Netherlands Anthropomorphic
versus zoomorphic

Lee and Nass 1999 − 0.417 48 Social presence Web interface United States Stick figure versus text
agent

Li et al. 2010 0.089 108 Engagement Lego Mindstorm
robot

China Humanlike versus
machinelike

Terzioğlu et al. 2020 Zero/max
coded

48 Social presence Cobot United States Gripper vertical, glass
mounted versus
gripper horizontal, no
glass

Movement cues

Terzioğlu et al. 2020 Zero/max
coded

48 Social presence Cobot United States Smooth versus
non-smooth motion

Terzioğlu et al. 2020 0.861 48 Social presence Cobot United States Idle versus no idle

Terzioğlu et al. 2020 0.482 24 Social presence Cobot United States Elbow down versus
elbow up
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Table 6 (continued)

Study Year Zr N Name of DV Operationalization
of the technology

Sample location Comparisons

Xu 2019 0.034 110 Medium-as-social-actor
presence

Robot Alpha United States Gestural versus
non-gestural
movement

Facial cues

Terzioğlu et al. 2020 0.853 24 Social presence Cobot United States Gaze versus no gaze

Other cues

Hoppe et al. 2020 0.813 19 Co-presence An artificial hand Germany Touch versus no touch

Lee et al. 2006 0.666 32 Social presence Robot Aibo United States Physical embodied
versus disembodied

Lee et al. 2006 0.374 32 Social presence Robot Aibo United States Physical embodied
versus disembodied
agent

Park and Lee 2014 0.386 80 Social presence Pleo Robot South Korea Warm skin versus cool
skin

Although the names of dependent variables vary, the actual measurements of these DVs were all about social presence. Zero/max coding means that as the
authors only reported non-significant result without further details, the effect sizes were zero/max coded to create a range
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Appendix 1b

See Table 7.

Table 7 Descriptive summary of sample studies on trust

Study Year Zr N Name of DV Operationalization
of the technology

Sample
location

Comparisons

Voice cues

Abdulrahman
et al.

2019 0.065 118 Trustworthiness virtual human Sarah Australia Human versus
synthetic voice

Chérif and
Lemoine

2019 0.068 640 Trustworthiness virtual assistant
Prosper

Unknown Human versus
synthetic voice

Chiou et al. 2020 0.334 89 Trust online virtual
human

Unknown Human versus machine
voice

Gong and Nass 2007 − 0.016 80 Trust computer agent
Baldi

United States Human versus
humanoid voice

Law et al. 2020 0.135 198 Trust Willow Garage PR2
robot

Unknown Voice versus text

Torre et al. 2020 0.415 110 Trustworthiness Pre-programmed
computer agent

United
Kingdom

Smiling voice versus
neutral voice

Xu 2019 0.283 110 Trust robot Alpha United States Human voice versus
synthetic voice

Xu 2020 0.024 111 Trust Voice assistant on
smartphone

United States Human voice versus
text

Language cues

Calvo et al. 2020 0.062 42 Trustworthiness Furhat robot Sweden Persuasive versus
neutral language

Ghazali et al. 2019 0.300 21 Trusting beliefs SociBot Netherlands Feedback versus no
feedback

Hoffmann et al. 2020 0.341 81 Affective and
cognitive trust

Robot Pepper Germany Error-free versus
erroneous

Hoffmann et al. 2020 0.151 81 Affective and
cognitive trust

Robot Pepper Germany Warm versus
non-warm language

Hoegen et al. 2019 0.352 30 Trustworthiness Portable Bluetooth
Speaker

United States Matching language
style versus control

Straten et al. 2020 0.289 144 Trust Robot NAO Netherlands Transparent language
style versus control

Xu 2020 0.128 111 Trust Voice assistant on
smartphone

United States Anthropomorphic
versus
non-anthropomorphic
language

Appearance cues

Burgoon et al. 2000 0.075 20 Credibility Computer agent Sweden Picture of agent versus
no picture

Castro-González
et al.

2016 − 0.067 34 Trustworthiness Baxter robot Unknown Full body versus one
arm

De Visser et al. 2016 − 0.248 20 Trust Automated agent United States Human versus agent

De Visser et al. 2016 − 0.045 17 Trust Automated agent United States Human versus agent

De Visser et al. 2016 − 0.204 20 Trust Automated agent United States Human versus agent

Erebak and Turgut 2019 0.115 102 Trust Robot AILA Turkey Humanoid versus
android robot
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Table 7 (continued)

Study Year Zr N Name of DV Operationalization
of the technology

Sample
location

Comparisons

Gong and Nass 2007 0.019 80 Trust computer agent
Baldi

United States Human versus
humanoid

Li et al. 2010 0.081 108 Trust Lego Mindstorm
robot

China Humanlike versus
machine like

Natarajan and
Gombolay

2020 Zero/max
coded

75 Trust Nao and Sawyer
robots

United States Humanlike versus
mechanical

Terzioğlu et al. 2020 Zero/max
coded

48 Trust Cobot United States Gripper vertical, glass
mounted versus
gripper horizontal, no
glass

VanVugt et al. 2009 0.245 80 Perceived ethics Computer agent Netherlands Correlation between
body size and trust

VanVugt et al. 2009 0.161 270 Perceived ethics Computer agent Netherlands Correlation between
body size and trust

Weitz et al. 2019 0.587 30 Trustworthiness Virtual agent: Gloria Germany Humanlike agent
versus no agent

Movement cues

Bevan and Fraser 2015 0.211 60 Trustworthiness Robot Nao United
Kingdom

Handshake and
feedback versus
handshake

Castro-González
et al.

2016 0.193 34 Trustworthiness Baxter robot Unknown Smooth versus
mechanistic
movement

Terzioğlu et al. 2020 Zero/max
coded

48 Trust Cobot United States Smooth versus
non-smooth motion

Terzioğlu et al. 2020 Zero/max
coded

48 Trust Cobot United States Idle versus no idle

Terzioğlu et al. 2020 Zero/max
coded

24 Trust Cobot United States Elbow down versus
elbow up

VandenBrule et al. 2014 0.441 156 Trust TWENDY robot Netherlands Motion fluency:
smooth vs, shake

VandenBrule et al. 2014 0.000 87 Trust scoreboard robot Netherlands Motion fluency:
smooth vs, shake

Xu 2019 0.245 110 Trust robot Alpha United States Gestural versus
non-gestural
movement

Facial cues

Elkins and Derrick 2013 0.158 88 Trust Embodied
conversational
agent

United States Smile versus neutral
facial expression

Ghazali et al. 2018 0.473 72 Trusting beliefs SociBot Netherlands Upturned eyebrows
and lips versus
nasolabial deepener,
lip corner depressor,
lips toward each other

Nomura and
Kanda

2015 0.240 93 Trust Robovie-R2 robot Japan Normal gaze versus
refrained gaze

Shamekhi et al. 2018 0.331 40 Trust Telepresence robot United States Face versus no face

Terzioğlu et al. 2020 Zero/max
coded

24 Trust Cobot United States Gaze versus no gaze

VandenBrule et al. 2014 Zero/max
coded

156 Trust TWENDY robot Netherlands Gaze following
movement versus
static
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Table 7 (continued)

Study Year Zr N Name of DV Operationalization
of the technology

Sample
location

Comparisons

Other cues

Looije et al. 2010 0.349 24 Trustworthy iCat robot Netherlands Physical versus virtual

Natarajan and
Gombolay

2020 Zero/max
coded

75 Trust Nao United States Physical versus virtual

Although the names of dependent variables vary, the actual measurements of these DVs were all about trust. Zero/max coding means that as the
authors only reported non-significant result without further details, the effect sizes were zero/max coded to create a range

Appendix 2

Publication Bias

To identify a potential “file-drawer-problem” that may lead
to the overestimation of the overall effect of pooled rela-
tionships, a common method to detect publication bias is
Rosenthal’s [104] approach of fail-safe n calculation. This
approach is to compare the value of “fail-safe n bias” and
“fail-safe n.” If the fail-safe n is larger than the fail-safe n
bias, then the meta-analysis features no publication bias. By
contrast, if the fail-safe n is smaller than the fail-safe n bias, it
indicates a potential bias of themeta-analysis. In this study, R
packagemetaphor revealed that the fail-safe n is 4066. Under
the zero-coded condition, the fail-safe n bias was 355. Under
themax-coded condition, the fail-safe n bias was 295. In both
conditions, the fail-safe n bias was smaller than the fail-safe
n, meaning that this meta-analysis presented no publication
bias (see funnel plots).

Funnel plot for zero-coded meta-analysis

Funnel plot for max-coded meta-analysis
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Appendix 3

Forest Plot for Individual Effect Sizes

The effects of social cues on social presence (zero-coded)

RE Model

−1 −0.5 0 0.5 1 1.5

Observed Outcome

Xu 2020

Xu 2020

Xu 2019

Xu 2019

Velner et al.,2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Straten et al., 2020

Park & Lee, 2014

Li et al., 2010

Lee et al., 2006

Lee et al. 2006

Lee _ Nass, 2005

Lee _ Nass, 2005

Lee _ Nass, 1999

Hoppe et al., 2020

Goble _ Edwards, 2018

Cho et al., 2019

Che..rif & Lemoine, 2019

Barco et al., 2020

Araujo, 2018

Abdulrahman et al., 2019

 0.04 [−0.15,  0.23]

 0.09 [−0.10,  0.28]

 0.06 [−0.13,  0.25]

 0.03 [−0.16,  0.22]

 0.03 [−0.14,  0.21]

 0.85 [ 0.43,  1.28]

 0.48 [ 0.05,  0.91]

 0.86 [ 0.57,  1.15]

 0.00 [−0.29,  0.29]

 0.00 [−0.29,  0.29]

 0.19 [ 0.02,  0.35]

 0.39 [ 0.16,  0.61]

 0.09 [−0.10,  0.28]

 0.37 [ 0.01,  0.74]

 0.67 [ 0.30,  1.03]

 0.48 [ 0.26,  0.71]

 0.31 [ 0.07,  0.55]

−0.42 [−0.71, −0.12]

 0.81 [ 0.32,  1.30]

 0.30 [ 0.06,  0.55]

 0.30 [ 0.09,  0.52]

 0.15 [ 0.07,  0.23]

 0.75 [ 0.41,  1.10]

 0.08 [−0.07,  0.23]

 0.04 [−0.15,  0.22]

 0.28 [ 0.16,  0.39]

Study Estimate [95% CI]
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The effects of social cues on social presence (max-coded)

RE Model

−1 −0.5 0 0.5 1 1.5

Observed Outcome

Xu 2020

Xu 2020

Xu 2019

Xu 2019

Velner et al.,2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Straten et al., 2020

Park & Lee, 2014

Li et al., 2010

Lee et al., 2006

Lee et al. 2006

Lee _ Nass, 2005

Lee _ Nass, 2005

Lee _ Nass, 1999

Hoppe et al., 2020

Goble _ Edwards, 2018

Cho et al., 2019

Che..rif & Lemoine, 2019

Barco et al., 2020

Araujo, 2018

Abdulrahman et al., 2019

 0.04 [−0.15,  0.23]

 0.09 [−0.10,  0.28]

 0.06 [−0.13,  0.25]

 0.03 [−0.16,  0.22]

 0.03 [−0.14,  0.21]

 0.85 [ 0.43,  1.28]

 0.48 [ 0.05,  0.91]

 0.86 [ 0.57,  1.15]

 0.19 [ 0.02,  0.35]

 0.39 [ 0.16,  0.61]

 0.09 [−0.10,  0.28]

 0.37 [ 0.01,  0.74]

 0.67 [ 0.30,  1.03]

 0.48 [ 0.26,  0.71]

 0.31 [ 0.07,  0.55]

−0.42 [−0.71, −0.12]

 0.81 [ 0.32,  1.30]

 0.30 [ 0.06,  0.55]

 0.30 [ 0.09,  0.52]

 0.15 [ 0.07,  0.23]

 0.75 [ 0.41,  1.10]

 0.08 [−0.07,  0.23]

 0.04 [−0.15,  0.22]

 0.30 [ 0.18,  0.43]

Study Estimate [95% CI]
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The effects of social cues on trust (zero-coded)

RE Model

−1 −0.5 0 0.5 1

Observed Outcome

Xu 2020

Xu 2020

Xu 2019

Xu 2019

Weitz et al., 2019

VanVugt et al., 2009

VanVugt et al., 2009

vandenBrule et al., 2014

vandenBrule et al., 2014

vandenBrule et al., 2014

Toader et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Terziog..lu et al., 2020

Straten et al., 2020

Shamekhi et al., 2018b

Nomura & Kanda, 2015

Natarajan & Gombolay, 2020

Natarajan & Gombolay, 2020

Looije et al, 2010

Li et al., 2010

Law et al. 2020

Hoegen et al., 2019

Hoffmann et al., 2020

Hoffmann et al., 2020

Gong _ Nass, 2007

Gong _ Nass, 2007

Ghazali et al, 2018

Ghazali et al, 2019

Erebak _ Turgut, 2019

Elkins _ Derr ick, 2013

De Visser et al., 2016

De Visser et al., 2016

De Visser et al., 2016

Chiou et al., 2020

Che..rif & Lemoine, 2019

Castro−Gonza..lez et al., 2016

Castro−Gonza..lez et al., 2016

Calvo et al., 2020

Burgoon et al., 2000

Bevan & Fraser, 2015

Abdulrahman et al., 2019

 0.02 [−0.16, 0.21]

 0.13 [−0.06, 0.32]

 0.28 [ 0.09, 0.47]

 0.24 [ 0.06, 0.43]

 0.59 [ 0.21, 0.96]

 0.16 [ 0.04, 0.28]

 0.24 [ 0.02, 0.47]

 0.00 [−0.21, 0.21]

 0.00 [−0.16, 0.16]

 0.44 [ 0.28, 0.60]

 0.08 [−0.04, 0.21]

 0.00 [−0.43, 0.43]

 0.00 [−0.43, 0.43]

 0.00 [−0.29, 0.29]

 0.00 [−0.29, 0.29]

 0.00 [−0.29, 0.29]

 0.29 [ 0.12, 0.45]

 0.33 [ 0.01, 0.65]

 0.24 [ 0.03, 0.45]

 0.00 [−0.23, 0.23]

 0.00 [−0.23, 0.23]

 0.35 [−0.08, 0.78]

 0.08 [−0.11, 0.27]

 0.13 [−0.01, 0.27]

 0.35 [−0.03, 0.73]

 0.15 [−0.07, 0.37]

 0.34 [ 0.12, 0.56]

−0.02 [−0.24, 0.21]

 0.02 [−0.20, 0.24]

 0.47 [ 0.24, 0.71]

 0.30 [−0.16, 0.76]

 0.12 [−0.08, 0.31]

 0.16 [−0.05, 0.37]

−0.20 [−0.68, 0.27]

−0.04 [−0.57, 0.48]

−0.25 [−0.72, 0.23]

 0.33 [ 0.12, 0.55]

 0.07 [−0.01, 0.15]

−0.07 [−0.42, 0.29]

 0.19 [−0.16, 0.54]

 0.06 [−0.25, 0.38]

 0.07 [−0.40, 0.55]

 0.21 [−0.05, 0.47]

 0.06 [−0.12, 0.25]

 0.14 [ 0.08, 0.19]

Study Estimate [95% CI]
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The effects of social cues on trust (max-coded)

RE Model
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 0.24 [ 0.06, 0.43]
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 0.16 [ 0.04, 0.28]
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 0.13 [−0.01, 0.27]
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 0.15 [−0.07, 0.37]
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Study Estimate [95% CI]
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